- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 绘制散点图
- 根据散点图判断是否线性相关
- + 由散点图画求近似回归直线
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
下表给出了5组数据(x,y),为选出4组数据使得x与y的线性相关程度最大,且保留第1组数据(-5,-3),则应去掉( )
第i组 | 1 | 2 | 3 | 4 | 5 |
xi | -5 | -4 | -3 | -2 | 4 |
yi | -3 | -2 | 4 | -1 | 6 |
A.第2组数据 |
B.第3组数据 |
C.第4组数据 |
D.第5组数据 |
某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响.对近8年的年宣传费xi和年销售量yi(i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.

表中
,
(Ⅰ)根据散点图判断,y=a+bx与y=c+d
哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)
(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;
(Ⅲ)已知这种产品的年利润z与x、y的关系为z=0.2y-x.根据(Ⅱ)的结果回答下列问题:
(ⅰ)年宣传费x=49时,年销售量及年利润的预报值是多少?
(ⅱ)年宣传费x为何值时,年利润的预报值最大?
附:对于一组数据
,
,……,
,其回归线
的斜率和截距的最小二乘估计分别为:
,

表中


(Ⅰ)根据散点图判断,y=a+bx与y=c+d

(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;
(Ⅲ)已知这种产品的年利润z与x、y的关系为z=0.2y-x.根据(Ⅱ)的结果回答下列问题:
(ⅰ)年宣传费x=49时,年销售量及年利润的预报值是多少?
(ⅱ)年宣传费x为何值时,年利润的预报值最大?
附:对于一组数据




![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
46.6 | 563 | 6.8 | 289.8 | 1.6 | 1469 | 108.8 |


某产品的广告支出
(单位:万元)与销售收入
(单位:万元)之间有下表所对应的数据:

(1)画出表中数据的散点图;
(2)求出
对
的线性回归方程;
(3)若广告费为9万元,则销售收入约为多少万元?
参考公式:



(1)画出表中数据的散点图;
(2)求出


(3)若广告费为9万元,则销售收入约为多少万元?
参考公式:

随着人们经济收入的不断增长,个人购买家庭轿车已不再是一种时尚车的使用费用,尤其是随着使用年限的增多,所支出的费用到底会增长多少,一直是购车一族非常关心的问题某汽车销售公司作了一次抽样调查,并统计得出某款车的使用年限
与所支出的总费用
(万元)有如表的数据资料:
(1) 在给出的坐标系中作出散点图;

(2)求线性回归方程
中的
、
;
(3)估计使用年限为
年时,车的使用总费用是多少?
(最小二乘法求线性回归方程系数公式
,
.)


使用年限![]() | 2 | 3 | 4 | 5 | 6 |
总费用![]() | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
(1) 在给出的坐标系中作出散点图;

(2)求线性回归方程



(3)估计使用年限为

(最小二乘法求线性回归方程系数公式


已知某种细菌的适宜生长温度为10℃~25℃,为了研究该种细菌的繁殖数量
(单位:个)随温度
(单位:℃)变化的规律,收集数据如下:
对数据进行初步处理后,得到了一些统计量的值,如下表所示:
其中
,
.

(1)请绘出
关于
的散点图,并根据散点图判断
与
哪一个更适合作为该种细菌的繁殖数量
关于温度
的回归方程类型(给出判断即可,不必说明理由);
(2)根据(1)的判断结果及表格数据,建立
关于
的回归方程(结果精确到0.1);
(3)当温度为25℃时,该种细菌的繁殖数量的预报值为多少?
参考公式:对于一组数据
,其回归直线
的斜率和截距的最小二成估计分别为
,
.
参考数据:
.


温度![]() | 12 | 14 | 16 | 18 | 20 | 22 | 24 |
繁殖数量![]() | 20 | 25 | 33 | 27 | 51 | 112 | 194 |
对数据进行初步处理后,得到了一些统计量的值,如下表所示:
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
18 | 66 | 3.8 | 112 | 4.3 | 1428 | 20.5 |
其中



(1)请绘出






(2)根据(1)的判断结果及表格数据,建立


(3)当温度为25℃时,该种细菌的繁殖数量的预报值为多少?
参考公式:对于一组数据




参考数据:

某单位为了了解某办公楼用电量
(度)与气温
之间的关系,随机统计了四个工作日的用电量与当天平均气温,并制作了对照表(若右图):得到的回归方程为
,则( )



气温![]() | ![]() | ![]() | ![]() | ![]() |
用电量(度) | ![]() | ![]() | ![]() | ![]() |
A.![]() | B.![]() | C.![]() | D.![]() |
1766年;人类已经发现的太阳系中的行星有金星、地球、火星、木星和土星.德国的一位中学教师戴维一提丢斯在研究了各行星离太阳的距离(单位:AU,AU是天文学中计量天体之间距离的一种单位)的排列规律后,预测在火星和木星之间应该还有一颗未被发现的行星存在,并按离太阳的距离从小到大列出了如下表所示的数据:
受他的启发,意大利天文学家皮亚齐于1801年终于发现了位于火星和木星之间的谷神星.
(1)为了描述行星离太阳的距离y与行星编号之间的关系,根据表中已有的数据画出散点图,并根据散点图的分布状况,从以下三种模型中选出你认为最符合实际的一种函数模型(直接给出结论即可);
①
;②
;③
.
(2)根据你的选择,依表中前几组数据求出函数解析式,并用剩下的数据检验模型的吻合情况;
(3)请用你求得的模型,计算谷神星离太阳的距离.
行星编号(x) | 1(金星) | 2(地球) | 3(火星) | 4( ) | 5(木星) | 6(土星) |
离太阳的距离(y) | 0.7 | 1.0 | 1.6 | | 5.2 | 10.0 |
受他的启发,意大利天文学家皮亚齐于1801年终于发现了位于火星和木星之间的谷神星.
(1)为了描述行星离太阳的距离y与行星编号之间的关系,根据表中已有的数据画出散点图,并根据散点图的分布状况,从以下三种模型中选出你认为最符合实际的一种函数模型(直接给出结论即可);
①



(2)根据你的选择,依表中前几组数据求出函数解析式,并用剩下的数据检验模型的吻合情况;
(3)请用你求得的模型,计算谷神星离太阳的距离.
某学生为了测试煤气灶烧水如何节省煤气的问题设计了一个实验,并获得了煤气开关旋钮旋转的弧度数
与烧开一壶水所用时间
的一组数据,且作了一定的数据处理(如下表),得到了散点图(如下图).
表中
,
.

(1)根据散点图判断,
与
哪一个更适宜作烧水时间
关于开关旋钮旋转的弧度数
的回归方程类型?(不必说明理由)
(2)根据判断结果和表中数据,建立
关于
的回归方程;
(3)若单位时间内煤气输出量
与旋转的弧度数
成正比,那么,利用第(2)问求得的回归方程知
为多少时,烧开一壶水最省煤气?
附:对于一组数据
,其回归直线
的斜率和截距的最小二乘法估计值分别为
,


![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
表中



(1)根据散点图判断,




(2)根据判断结果和表中数据,建立


(3)若单位时间内煤气输出量



附:对于一组数据



