- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 绘制频率分布直方图
- 补全频率分布直方图
- 由频率分布直方图计算频率、频数、样本容量、总体容量
- 频率分布直方图的优缺点与适用对象
- + 频率分布直方图的实际应用
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某钢铁加工厂新生产一批钢管,为了了解这批产品的质量状况,检验员随机抽取了
件钢管作为样本进行检测,将它们的内径尺寸作为质量指标值,由检测结果得如下频率分布表和频率分布直方图:

(1)求
,
;
(2)根据质量标准规定:钢管内径尺寸大于等于
或小于
为不合格,钢管内径尺寸在
或
为合格,钢管内径尺寸在
为优等.钢管的检测费用为
元/根,把样本的频率分布作为这批钢管的概率分布.
(i)若从这批钢管中随机抽取
根,求内径尺寸为优等钢管根数
的分布列和数学期望;
(ii)已知这批钢管共有
根,若有两种销售方案:
第一种方案:不再对该批剩余钢管进行检测,扣除
根样品中的不合格钢管后,其余所有钢管均以
元/根售出;
第二种方案:对该批钢管进行一一检测,不合格钢管不销售,并且每根不合格钢管损失
元,合格等级的钢管
元/根,优等钢管
元/根.
请你为该企业选择最好的销售方案,并说明理由.

分组 | 频数 | 频率 |
![]() | ![]() | ![]() |
![]() | | |
![]() | ![]() | |
![]() | | |
![]() | | |
![]() | ![]() | ![]() |
![]() | ![]() | ![]() |
合计 | ![]() | ![]() |

(1)求


(2)根据质量标准规定:钢管内径尺寸大于等于






(i)若从这批钢管中随机抽取


(ii)已知这批钢管共有

第一种方案:不再对该批剩余钢管进行检测,扣除


第二种方案:对该批钢管进行一一检测,不合格钢管不销售,并且每根不合格钢管损失



请你为该企业选择最好的销售方案,并说明理由.
某校为了解高三学生身体素质情况,从某项体育测试成绩中随机抽取
个学生成绩进行分析,得到成绩频率分布直方图(如图所示),已知成绩在
的学生人数为
,且有
个女生的成绩在
中,则
__________;现由成绩在
的样本中随机抽取2名学生作指导工作,记所抽取学生中女生的人数为
,则
的数学期望是__________.










某公司为了了解2018年当地居民网购消费情况,随机抽取了100人,对其2018年全年网购消费金额(单位:千元)进行了统计,所统计的金额均在区间
内,并按
,
,…,
6组,制成如图所示的频率分布直方图.

(1)求图中
的值;
(2)若将全年网购消费金额在20千元及以上者称为网购迷.结合图表数据,补全
列联表,并判断是否有
的把握认为样本数据中的网购迷与性别有关系?说明理由;
下面的临界值表仅供参考:
附:
.





(1)求图中

(2)若将全年网购消费金额在20千元及以上者称为网购迷.结合图表数据,补全


| 男 | 女 | 合计 |
网购迷 | | 20 | |
非网购迷 | 45 | | |
合计 | | | |
下面的临界值表仅供参考:
![]() | 0.10 | 0.05 | 0.010 | 0.005 | 0.001 |
![]() | 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
附:

为保障食品安全,某地食品药监管部门对辖区内甲、乙两家食品企业进行检查,分别从这两家企业生产的某种同类产品中随机抽取了100件作为样本,并以样本的一项关键质量指标值为检测依据.已知该质量指标值对应的产品等级如下:
根据质量指标值的分组,统计得到了甲企业的样本频率分布直方图和乙企业的样本频数分布表(如下面表,其中a>0).
(Ⅰ)现从甲企业生产的产品中任取一件,试估计该件产品为次品的概率;
(Ⅱ)为守法经营、提高利润,乙企业开展次品生产原因调查活动.已知乙企业从样本里的次品中随机抽取了两件进行分析,求这两件次品中恰有一件指标值属于[40,45]的产品的概率;
(Ⅲ)根据图表数据,请自定标准,对甲、乙两企业食品质量的优劣情况进行比较.
质量指标值 | [15,20) | [20,25) | [25,30) | [30,35) | [35,40) | [40,45] |
等级 | 次品 | 二等品 | 一等品 | 二等品 | 三等品 | 次品 |
根据质量指标值的分组,统计得到了甲企业的样本频率分布直方图和乙企业的样本频数分布表(如下面表,其中a>0).
质量指标值 | 频数 |
[15,20) | 2 |
[20,25) | 18 |
[25,30) | 48 |
[30,35) | 14 |
[35,40) | 16 |
[40,45] | 2 |
合计 | 100 |
(Ⅰ)现从甲企业生产的产品中任取一件,试估计该件产品为次品的概率;
(Ⅱ)为守法经营、提高利润,乙企业开展次品生产原因调查活动.已知乙企业从样本里的次品中随机抽取了两件进行分析,求这两件次品中恰有一件指标值属于[40,45]的产品的概率;
(Ⅲ)根据图表数据,请自定标准,对甲、乙两企业食品质量的优劣情况进行比较.

为了了解我市参加2018年全国高中数学联赛的学生考试结果情况,从中选取60名同学将其成绩(百分制,均为正数)分成
六组后,得到部分频率分布直方图(如图),观察图形,回答下列问题:

(1)求分数在
内的频率,并补全这个频率分布直方图;
(2)根据频率分布直方图,估计本次考试成绩的众数、均值;
(3)根据评奖规则,排名靠前10%的同学可以获奖,请你估计获奖的同学至少需要所少分?


(1)求分数在

(2)根据频率分布直方图,估计本次考试成绩的众数、均值;
(3)根据评奖规则,排名靠前10%的同学可以获奖,请你估计获奖的同学至少需要所少分?
为提倡节能减排,同时减轻居民负担,广州市积极推进“一户一表”工程.非一户一表用户电费采用“合表电价”收费标准:0.65元/度.“一户一表”用户电费采用阶梯电价收取,其11月到次年4月起执行非夏季标准如下:
例如:某用户11月用电410度,采用合表电价收费标准,应交电费
元,若采用阶梯电价收费标准,应交电费
元.
为调查阶梯电价是否能取到“减轻居民负担”的效果,随机调查了该市100户的11月用电量,工作人员已经将90户的月用电量填在下面的频率分布表中,最后10户的月用电量(单位:度)为:88、268、370、140、440、420、520、320、230、380.
(1)完成频率分布表,并绘制频率分布直方图;

(2)根据已有信息,试估计全市住户11月的平均用电量(同一组数据用该区间的中点值作代表);
(3)设某用户11月用电量为
度(
),按照合表电价收费标准应交
元,按照阶梯电价收费标准应交
元,请用
表示
和
,并求当
时,
的最大值,同时根据频率分布直方图估计“阶梯电价”能否给不低于75%的用户带来实惠?
| 第一档 | 第二档 | 第三档 |
每户每月用电量(单位:度) | ![]() | ![]() | ![]() |
电价(单位:元/度) | 0.61 | 0.66 | 0.91 |
例如:某用户11月用电410度,采用合表电价收费标准,应交电费


为调查阶梯电价是否能取到“减轻居民负担”的效果,随机调查了该市100户的11月用电量,工作人员已经将90户的月用电量填在下面的频率分布表中,最后10户的月用电量(单位:度)为:88、268、370、140、440、420、520、320、230、380.
组别 | 月用电量 | 频数统计 | 频数 | 频率 |
① | ![]() | ![]() | | |
② | ![]() | ![]() | | |
③ | ![]() | ![]() | | |
④ | ![]() | ![]() | | |
⑤ | ![]() | ![]() | | |
⑥ | ![]() | ![]() | | |
合计 | | | | |
(1)完成频率分布表,并绘制频率分布直方图;

(2)根据已有信息,试估计全市住户11月的平均用电量(同一组数据用该区间的中点值作代表);
(3)设某用户11月用电量为









每年3月21日是世界睡眠日,良好的睡眠状况是保持身体健康的重要基础.为了做好今年的世界睡眠日宣传工作,某社区从本辖区内同一年龄层次的人员中抽取了100人,通过问询的方式得到他们在一周内的睡眠时间(单位:小时),并绘制出如右的频率分布直方图:

(Ⅰ)求这100人睡眠时间的平均数
(同一组数据用该组区间的中点值代替,结果精确到个位);
(Ⅱ)由直方图可以认为,人的睡眠时间
近似服从正态分布
,其中
近似地等于样本平均数
,
近似地等于样本方差
,
.假设该辖区内这一年龄层次共有10000人,试估计该人群中一周睡眠时间位于区间(39.2,50.8)的人数.
附:
.若随机变量
服从正态分布
,则
,
.

(Ⅰ)求这100人睡眠时间的平均数

(Ⅱ)由直方图可以认为,人的睡眠时间







附:





我市为改善空气环境质量,控制大气污染,政府相应出台了多项改善环境的措施.其中一项是为了减少燃油汽车对大气环境污染.从2018年起大力推广使用新能源汽车,鼓励市民如果需要购车,可优先考虑选用新能源汽车.政府对购买使用新能源汽车进行购物补贴,同时为了地方经济发展,对购买本市企业生产的新能源汽车比购买外地企业生产的新能源汽车补贴高.所以市民对购买使用本市企业生产的新能源汽车的满意度也相应有所提高.有关部门随机抽取本市本年度内购买新能源汽车的
户,其中有
户购买使用本市企业生产的新能源汽车,对购买使用新能源汽车的满意度进行调研,满意度以打分的形式进行.满分
分,将分数按照
分成5组,得如下频率分布直方图.

(1)若本次随机抽取的样本数据中购买使用本市企业生产的新能源汽车的用户中有
户满意度得分不少于
分,把得分不少于
分为满意.根据提供的条件数据,完成下面的列联表.
并判断是否有
的把握认为购买使用新能源汽车的满意度与产地有关?
(2)把满意度得分少于
分的用户很不满意用户,在很不满意的用户中有
户购买使用本市企业生产的新能源汽车,其他是购买外地产的.现在从样本中很不满意的用户中随机抽取
户进行了解很不满意的具体原因,求这
户恰好是一户购买本市企业产的,另一户是购买外地企业产的概率.





(1)若本次随机抽取的样本数据中购买使用本市企业生产的新能源汽车的用户中有



| 满意 | 不满意 | 总计 |
购本市企业生产的新能源汽车户数 | | | |
购外地企业生产的新能源汽车户数 | | | |
总计 | | | |
并判断是否有

(2)把满意度得分少于




某种植园在芒果临近成熟时,随机从一些芒果树上摘下100个芒果,其质量分别在
,
,
,
,
,
(单位:克)中,经统计的频率分布直方图如图所示.

(1)估计这组数据平均数;
(2)现按分层抽样从质量为
,
的芒果中随机抽取5个,再从这5个中随机抽取2个,求这2个芒果都来自同一个质量区间的概率;
(3)某经销商来收购芒果,以各组数据的中间数代表这组数据的平均值,用样本估计总计,该种植园中还未摘下的芒果大约还有10000个,经销商提出以下两种收购方案:
方案①:所有芒果以9元/千克收购;
方案②:对质量低于250克的芒果以2元/个收购,对质量高于或等于250克的芒果以3元/个收购.
通过计算确定种植园选择哪种方案获利更多.







(1)估计这组数据平均数;
(2)现按分层抽样从质量为


(3)某经销商来收购芒果,以各组数据的中间数代表这组数据的平均值,用样本估计总计,该种植园中还未摘下的芒果大约还有10000个,经销商提出以下两种收购方案:
方案①:所有芒果以9元/千克收购;
方案②:对质量低于250克的芒果以2元/个收购,对质量高于或等于250克的芒果以3元/个收购.
通过计算确定种植园选择哪种方案获利更多.