- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 随机抽样
- 普查与抽样
- 总体与样本
- 系统抽样
- 分层抽样
- 三种抽样方法的比较
- 用样本估计总体
- 变量间的相关关系
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知某校甲、乙、丙三个兴趣小组的学生人数分别为36,24,24.现采用分层抽样的方法从中抽取7人,进行睡眠质量的调查.
(1)应从甲、乙、丙三个兴趣小组的学生中分别抽取多少人?
(2)若抽出的7人中有3人睡眠不足,4人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.用
表示抽取的3人中睡眠充足的学生人数,求随机变量
的分布列与数学期望.
(1)应从甲、乙、丙三个兴趣小组的学生中分别抽取多少人?
(2)若抽出的7人中有3人睡眠不足,4人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.用


已知某校甲、乙、丙三个兴趣小组的学生人数分别为36,24,12.现采用分层抽样的方法从中抽取6人,进行睡眠质量的调查.
(1)应从甲、乙、丙三个兴趣小组的学生中分别抽取多少人?
(2)设抽出的6人分别用
、
、
、
、
、
表示,现从6人中随机抽取2人做进一步的身体检查.
(i)试用所给字母列出所有可能的抽取结果;
(ii)设
为事件“抽取的2人来自同一兴趣小组”,求事件
发生的概率.
(1)应从甲、乙、丙三个兴趣小组的学生中分别抽取多少人?
(2)设抽出的6人分别用






(i)试用所给字母列出所有可能的抽取结果;
(ii)设


某班运动队由足球运动员18人、篮球运动员12人、乒乓球运动员6人组成(每人只参加一项),现从这些运动员中抽取一个容量为n的样本,若分别采用系统抽样法和分层抽样法,则都不用剔除个体;当样本容量为n+1时,若采用系统抽样法,则需要剔除1个个体,那么样本容量n为________ .
据报道,全国很多省市将英语考试作为高考改革的重点,一时间“英语考试该如何改革”引起广泛关注,为了解某地区学生和包括老师、家长在内的社会人士对高考英语改革的看法,某媒体在该地区选择了3 000人进行调查,就“是否取消英语听力”问题进行了问卷调查统计,结果如下表:
已知在全体样本中随机抽取1人,抽到持“应该保留”态度的人的概率为0.06.
(1)现用分层抽样的方法在所有参与调查的人中抽取300人进行问卷访谈,问应在持“无所谓”态度的人中抽取多少人?
(2)在持“应该保留”态度的人中,用分层抽样的方法抽取6人,然后从这6人中随机抽取2人,求这2人中恰好有1个人为在校学生的概率.
态度 | | | |
调查人群 | 应该取消 | 应该保留 | 无所谓 |
在校学生 | 2100人 | 120人 | y人 |
社会人士 | 500人 | x人 | z人 |
已知在全体样本中随机抽取1人,抽到持“应该保留”态度的人的概率为0.06.
(1)现用分层抽样的方法在所有参与调查的人中抽取300人进行问卷访谈,问应在持“无所谓”态度的人中抽取多少人?
(2)在持“应该保留”态度的人中,用分层抽样的方法抽取6人,然后从这6人中随机抽取2人,求这2人中恰好有1个人为在校学生的概率.
假设要抽查某企业生产的某种品牌的袋装牛奶的质量是否达标,现从800袋牛奶中抽取50袋进行检验.利用随机数表抽取样本时,先将800袋牛奶按000,001,……,799进行编号,如果从随机数表第3行第1列数开始向右读,最先读到的6袋牛奶的编号是614,593,379,242,203,722,请你以此方式继续向右读数,随后读出的2袋牛奶的编号是______、______.下面摘取了随机数表第1行第5行)
78226 85384 40527 48987 60602 16085 29971 61279
43021 92980 27768 26916 27783 84572 78483 39820
61459 39073 79242 20372 21048 87088 34600 74636
63171 58247 12907 50303 28814 40422 97895 61421
42372 53183 51546 90385 12120 64042 51320 22983
78226 85384 40527 48987 60602 16085 29971 61279
43021 92980 27768 26916 27783 84572 78483 39820
61459 39073 79242 20372 21048 87088 34600 74636
63171 58247 12907 50303 28814 40422 97895 61421
42372 53183 51546 90385 12120 64042 51320 22983
福利彩票“双色球”中红色球由编号为01,02,…,33的33个球组成,某彩民利用下面的随机数表选取6组数作为6个红色球的编号,选取方法是从随机数表(如下)第1行的第6列数字开始由左到右依次选取两个数字,则选出来的第2个红色球的编号为( )


A.32 | B.48 | C.37 | D.23 |
某校高二年级有1000名学生,其中文科生有300名,按文理生比例用分层抽样的方法,从该年级学生中抽取一个容量为50的样本,则应抽取的理科生人数为________.
有40件产品,编号从1到40,从中抽取4件检验,用系统抽样方法确定所抽的编号可能为()
A.5,10,15,20 | B.5,8,31,36 |
C.2,14,26,38 | D.2,12,22,32 |
在某批次的某种灯泡中,随机地抽取
个样品,并对其寿命进行追踪调查,将结果列成频率分布表如下.根据寿命将灯泡分成优等品、正品和次品三个等级,其中寿命大于或等于
天的灯泡是优等品,寿命小于
天的灯泡是次品,其余的灯泡是正品.
(1)根据频率分布表中的数据,写出
、
的值;
(2)某人从灯泡样品中随机地购买了
个,如果这
个灯泡的等级情况恰好与按三个等级分层抽样所得的结果相同,求
的最小值;
(3)某人从这个批次的灯泡中随机地购买了
个进行使用,若以上述频率作为概率,用
表示此人所购买的灯泡中次品的个数,求
的分布列和数学期望.



寿命(天) | 频数 | 频率 |
![]() | ![]() | ![]() |
![]() | ![]() | ![]() |
![]() | ![]() | ![]() |
![]() | ![]() | ![]() |
![]() | ![]() | ![]() |
合计 | ![]() | ![]() |
(1)根据频率分布表中的数据,写出


(2)某人从灯泡样品中随机地购买了



(3)某人从这个批次的灯泡中随机地购买了


