- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 随机抽样
- 普查与抽样
- 总体与样本
- 系统抽样
- 分层抽样
- 三种抽样方法的比较
- 用样本估计总体
- 变量间的相关关系
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
为践行“绿水青山就是金山银山”的发展理念和提高生态环境的保护意识,高二年级准备成立一个环境保护兴趣小组.该年级理科班有男生400人,女生200人;文科班有男生100人,女生300人.现按男、女用分层抽样从理科生中抽取6人,按男、女分层抽样从文科生中抽取4人,组成环境保护兴趣小组,再从这10人的兴趣小组中抽出4人参加学校的环保知识竞赛.
(1)设事件
为“选出的这4个人中要求有两个男生两个女生,而且这两个男生必须文、理科生都有”,求事件
发生的概率;
(2)用
表示抽取的4人中文科女生的人数,求
的分布列和数学期望.
(1)设事件


(2)用


现要完成下列3项抽样调查:①从20罐奶粉中抽取4罐进行食品安全卫生检查;②高二年级有2000名学生,为调查学生的学习情况抽取一个容量为20的样本;③从某社区100 户高收人家庭,270户中等收人家庭,80户低收人家庭中选出45户进行消费水平调查.较为合理的抽样方法是( )
A.①系统抽样,②简单随机抽样,③分层抽样 |
B.①简单随机抽样,②分层抽样,③系统抽样 |
C.①分层抽样,②系统抽样,③简单随机抽样 |
D.①简单随机抽样,②系统抽样,③分层抽样 |
某市新上了一批便民公共自行车,有绿色和橙黄色两种颜色,且绿色公共自行车和橙黄色公共自行车的数量比为2∶1,现在按照分层抽样的方法抽取36辆这样的公共自行车放在某校门口,则其中绿色公共自行车的辆数是( )
A.8 | B.12 | C.16 | D.24 |
为预防
病毒爆发,某生物技术公司研制出一种新流感疫苗,为测试该疫苗的有效性(若疫苗有效的概率小于
%,则认为测试没有通过),公司选定
个流感样本分成三组,测试结果如下表:
已知在全体样本中随机抽取
个,抽到
组疫苗有效的概率是
.
(Ⅰ)求
的值;
(Ⅱ)现用分层抽样的方法在全体样本中抽取
个测试结果,问应在
组抽取多少个?
(Ⅲ)已知
,
,求不能通过测试的概率.



| ![]() | ![]() | ![]() |
疫苗有效 | ![]() | ![]() | ![]() |
疫苗无效 | ![]() | ![]() | ![]() |
已知在全体样本中随机抽取



(Ⅰ)求

(Ⅱ)现用分层抽样的方法在全体样本中抽取


(Ⅲ)已知


某课题组进行城市空气质量调查,按地域把24个城市分成甲、乙、丙三组,对应的城市数分别为4,12,8,若用分层抽样抽取6个城市,则丙组中应抽取的城市数为_______ .
某校高一、高二、高三分别有学生1600名、1200名、800名,为了解该校高中学生的牙齿健康状况,按各年级的学生数进行分层抽样,若高三抽取20名学生,则高一、高二共抽取的学生数为 .
总体由编号为01,02,…,39,40的40个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第6列和第7列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )
50 44 66 44 21 66 06 58 05 62 61 65 54 35 02 42 35 48 96 32 14 52 41 52 48 |
22 66 22 15 86 26 63 75 41 99 58 42 36 72 24 58 37 52 18 51 03 37 18 39 11 |
A.23 | B.21 | C.35 | D.32 |
某单位由老年教师27人,中年教师54人,青年教师81人,为了调查他们的身体状况,需从他们中间抽取一个容量为36的样本,则青年教师被抽取的人数是 .