- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 随机抽样
- 普查与抽样
- 总体与样本
- 系统抽样
- 分层抽样
- 三种抽样方法的比较
- 用样本估计总体
- 变量间的相关关系
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
武汉有“九省通衢”之称,也称为“江城”,是国家历史文化名城.其中著名的景点有黄鹤楼、户部巷、东湖风景区等等.
(1)为了解“五·一”劳动节当日江城某旅游景点游客年龄的分布情况,从年龄在22岁到52岁的游客中随机抽取了1000人,制成了如图的频率分布直方图:

现从年龄在
内的游客中,采用分层抽样的方法抽取10人,再从抽取的10人中随机抽取4人,记4人中年龄在
内的人数为
,求
;
(2)为了给游客提供更舒适的旅游体验,该旅游景点游船中心计划在2020年劳动节当日投入至少1艘至多3艘
型游船供游客乘坐观光.由2010到2019这10年间的数据资料显示每年劳动节当日客流量
(单位:万人)都大于1.将每年劳动节当日客流量数据分成3个区间整理得表:
以这10年的数据资料记录的3个区间客流量的频率作为每年客流量在该区间段发生的概率,且每年劳动节当日客流量相互独立.
该游船中心希望投入的
型游船尽可能被充分利用,但每年劳动节当日
型游船最多使用量(单位:艘)要受当日客流量
(单位:万人)的影响,其关联关系如下表:
若某艘
型游船在劳动节当日被投入且被使用,则游船中心当日可获得利润3万元;若某艘
型游船劳动节当日被投入却不被使用,则游船中心当日亏损0.5万元.记
(单位:万元)表示该游船中心在劳动节当日获得的总利润,
的数学期望越大游船中心在劳动节当日获得的总利润越大,问该游船中心在2020年劳动节当日应投入多少艘
型游船才能使其当日获得的总利润最大?
(1)为了解“五·一”劳动节当日江城某旅游景点游客年龄的分布情况,从年龄在22岁到52岁的游客中随机抽取了1000人,制成了如图的频率分布直方图:

现从年龄在




(2)为了给游客提供更舒适的旅游体验,该旅游景点游船中心计划在2020年劳动节当日投入至少1艘至多3艘


劳动节当日客流量![]() | ![]() | ![]() | ![]() |
频数(年) | 2 | 4 | 4 |
以这10年的数据资料记录的3个区间客流量的频率作为每年客流量在该区间段发生的概率,且每年劳动节当日客流量相互独立.
该游船中心希望投入的



劳动节当日客流量![]() | ![]() | ![]() | ![]() |
![]() | 1 | 2 | 3 |
若某艘





已知某中学高三文科班学生共有800人参加了数学与地理的水平测试,学校决定利用随机数表法从中抽取100人进行成绩抽样调查,先将800人按001,002,…,800进行编号.
(1)如果从第8行第7列的数开始向右读,请你依次写出最先检查的3个人的编号;
(下面摘取了第7行到第9行)
84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76
63 01 63 78 59 16 95 56 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79
33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54
(2)抽取的100人的数学与地理的水平测试成绩如下表:
成绩分为优秀、良好、及格三个等级;横向,纵向分别表示地理成绩与数学成绩,例如:表中数学成绩为良好的共有20+18+4=42.
①若在该样本中,数学成绩优秀率是30%,求a,b的值:
②在地理成绩及格的学生中,已知
求地理成绩及格的学生中数学成绩优秀的人数比及格的人数少的概率.
(1)如果从第8行第7列的数开始向右读,请你依次写出最先检查的3个人的编号;
(下面摘取了第7行到第9行)
84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76
63 01 63 78 59 16 95 56 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79
33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54
(2)抽取的100人的数学与地理的水平测试成绩如下表:
成绩分为优秀、良好、及格三个等级;横向,纵向分别表示地理成绩与数学成绩,例如:表中数学成绩为良好的共有20+18+4=42.
人数 | 数学 | |||
优秀 | 良好 | 及格 | ||
地理 | 优秀 | 7 | 20 | 5 |
良好 | 9 | 18 | 6 | |
及格 | a | 4 | b |
①若在该样本中,数学成绩优秀率是30%,求a,b的值:
②在地理成绩及格的学生中,已知

党的十九大明确把精准脱贫作为决胜全面建成小康社会必须打好的三大攻坚战之一,为坚决打赢脱贫攻坚战,某帮扶单位为帮助定点扶贫村扶贫,此帮扶单位为了解该村贫困户对其所提供帮扶的满意度,随机调查了40个贫困户,得到贫困户的满意度评分如下:
用系统抽样法从40名贫困户中抽取容量为8的样本,且在第一分段里随机抽到的评分数据为86.
(1)请你列出抽到的8个样本的评分数据;
(2)计算所抽到的8个样本的均值
和方差
;
(3)在(2)条件下,若贫困户的满意度评分在
之间,则满意度等级为“A级”.运用样本估计总体的思想,现从(1)中抽到的8个样本的满意度为“A级”贫困户中随机地抽取2户,求所抽到2户的满意度评分均“超过85”的概率.(参考数据:
,
,
)
贫困户 编号 | 评分 | | 贫困户 编号 | 评分 | | 贫困户 编号 | 评分 | | 贫困户 编号 | 评分 |
1 | 78 | 11 | 88 | 21 | 79 | 31 | 93 | |||
2 | 73 | 12 | 86 | 22 | 83 | 32 | 78 | |||
3 | 81 | 13 | 95 | 23 | 72 | 33 | 75 | |||
4 | 92 | 14 | 76 | 24 | 74 | 34 | 81 | |||
5 | 86 | 15 | 80 | 25 | 93 | 35 | 89 | |||
6 | 85 | 16 | 78 | 26 | 66 | 36 | 77 | |||
7 | 79 | 17 | 88 | 27 | 80 | 37 | 81 | |||
8 | 84 | 18 | 82 | 28 | 83 | 38 | 76 | |||
9 | 63 | 19 | 76 | 29 | 74 | 39 | 85 | |||
10 | 85 | 20 | 87 | 30 | 82 | 40 | 78 |
用系统抽样法从40名贫困户中抽取容量为8的样本,且在第一分段里随机抽到的评分数据为86.
(1)请你列出抽到的8个样本的评分数据;
(2)计算所抽到的8个样本的均值


(3)在(2)条件下,若贫困户的满意度评分在




某城市修建经济适用房.已知甲、乙、丙三个社区分别有低收入家庭360户、270户、180户,若首批经济适用房中有90套住房用于解决住房紧张问题,采用分层抽样的方法决定各社区户数,则应从乙社区中抽取低收入家庭的户数为()
A.40 | B.36 | C.30 | D.20 |
将参加数学竞赛的1000名学生编号如下:0001,0002,0003,…,1000,打算从中抽取一个容量为50的样本,按系统抽样的办法分成50个部分,如果第一部分编号为0001,0002,…,0020,从中随机抽取一个号码为0015,则第40个号码为___ .
《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为( )
A.![]() | B.![]() | C.![]() | D.![]() |
某学院
三个专业共有1200名学生,为了调查这些学生勤工俭学的情况,拟采用分层抽样的方祛抽取一个容量为120的样本,已知该学院的
专业有380名学生,
专业有420名学生,则在该学院的
专业应抽取的学生人数为( )




A.30 | B.40 | C.50 | D.60 |
在
中国北京世界园艺博览会期间,某工厂生产
、
、
三种纪念品,每一种纪念品均有精品型和普通型两种,某一天产量如下表:(单位:个)
现采用分层抽样的方法在这一天生产的纪念品中抽取
个,其中
种纪念品有
个.
(1)求
的值;
(2)从
种精品型纪念品中抽取
个,其某种指标的数据分别如下:
、
、
、
、
,把这
个数据看作一个总体,其均值为
,方差为
,求
的值;
(3)用分层抽样的方法在
种纪念品中抽取一个容量为
的样木,从样本中任取
个纪念品,求至少有
个精品型纪念品的概率.




| 纪念品![]() | 纪念品![]() | 纪念品![]() |
精品型 | ![]() ![]() | ![]() | ![]() |
普通型 | ![]() | ![]() | ![]() |
现采用分层抽样的方法在这一天生产的纪念品中抽取



(1)求

(2)从











(3)用分层抽样的方法在




用系统抽样法从160名学生中抽取容量为20的样本,将160名学生从
编号,按编号顺序平均分成 20组(
号,
号,
号).若假设第1组抽出的号码为3,则第5组中用抽签方法确定的号码是__________ .




某单位有职工480人,其中青年职工210人,中年职工150人,老年职工120人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本.若样本中的青年职工为7人,则样本容量为________.