- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 随机抽样
- 普查与抽样
- 总体与样本
- 系统抽样
- 分层抽样
- 三种抽样方法的比较
- 用样本估计总体
- 变量间的相关关系
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某学校准备调查高三年级学生完成课后作业所需时间,采取了两种抽样调查的方式:第一种由学生会的同学随机对24名同学进行调查;第二种由教务处对年级的240名学生编号,由001到240,请学号最后一位为3的同学参加调查,则这两种抽样方式依次为



A.分层抽样,简单随机抽样 | B.简单随机抽样,分层抽样 |
C.分层抽样,系统抽样 | D.简单随机抽样,系统抽样 |
总体有编号为01,02,…,19,20的20个个体组成。利用下面的随机数表选取6个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第6个个体的编号为( )
7816 6572 0802 6314 0702 4369 9728 0198 |
3204 9234 4935 8200 3623 4869 6938 7481 |
A.14 | B.07 | C.04 | D.01 |
某单位有200名职工,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1-200编号,并按编号顺序平均分为40组(1-5号,6-10号…,196-200号).若第5组抽出的号码为22,则第8组抽出的号码应是
某师范大学的数学学院、物理学院、化学学院、生物学院今年共录取本科新生5200人,且知四个学院录取的新生人数比为5:4:3:1,现用分层抽样的方法从这些本科新生中抽取一个容量为260的样本,则物理学院应抽取学生( )
A.100人 | B.60人 | C.80人 | D.20人 |
为了检查某超市货架上的奶粉是否含有三聚氰胺,要从编号依次为1到50的袋装奶粉中抽取5袋进行检验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的5袋奶粉的编号可能是()
A.5,10,15,20,25 | B.2,4,8,16,32 |
C.1,2,3,4,5 | D.7,17,27,37,47 |
甲校有
名学生,乙校有
名学生,丙校有
名学生,为统计三校学生某方面的情况,计划采用分层抽样法,抽取一个样本容量为
人的样本,应在这三校分别抽取学生()




A.![]() ![]() ![]() | B.![]() ![]() ![]() |
C.![]() ![]() ![]() | D.![]() ![]() ![]() |
某班共有36人,编号分别为1,2,3,…,36.现用系统抽样的方法,抽取一个容量为4的样本,已知编号3、12、30在样本中,那么样本中还有一个编号是__________.
某工厂采用系统抽样方法,从一车间全体
名职工中抽取
名职工进行一项安全生产调查,现将
名职工从
到
进行编号,已知从
到
这
个编号中抽到的编号是
,则在
到
中随机抽到的编号应该是( )











A.![]() | B.![]() | C.![]() | D.![]() |
某校高三课外兴趣小组为了解高三同学高考结束后是否打算观看2018年足球世界杯比赛的情况,从全校高三年级1500名男生、1000名女生中按分层抽样的方式抽取125名学生进行问卷调查,情况如下表:
(1)求出表中数据b,c;
(2)判断是否有99%的把握认为观看2018年足球世界杯比赛与性别有关;
(3)为了计算“从10人中选出9人参加比赛”的情况有多少种,我们可以发现它与“从10人中选出1人不参加比赛”的情况有多少种是一致的.现有问题:在打算观看2018年足球世界杯比赛的同学中有5名男生、2名女生来自高三(5)班,从中推选5人接受校园电视台采访,请根据上述方法,求被推选出的5人中恰有四名男生、一名女生的概率.
| 打算观看 | 不打算观看 |
女生 | 20 | b |
男生 | c | 25 |
(1)求出表中数据b,c;
(2)判断是否有99%的把握认为观看2018年足球世界杯比赛与性别有关;
(3)为了计算“从10人中选出9人参加比赛”的情况有多少种,我们可以发现它与“从10人中选出1人不参加比赛”的情况有多少种是一致的.现有问题:在打算观看2018年足球世界杯比赛的同学中有5名男生、2名女生来自高三(5)班,从中推选5人接受校园电视台采访,请根据上述方法,求被推选出的5人中恰有四名男生、一名女生的概率.