- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 随机抽样
- 普查与抽样
- 总体与样本
- 系统抽样
- 分层抽样
- 三种抽样方法的比较
- 用样本估计总体
- 变量间的相关关系
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
为了了解某次数学竞赛中1 000名学生的成绩,从中抽取一个容量为100的样本,则每名学生成绩入样的机会是_________________________。
某单位有老年人28 人,中年人54人,青年人81人,为了调查他们的身体状况的某项指标,需从他们中间抽取一个容量为36样本,则老年人、中年人、青年人分别各抽取的人数是 ( )
A.6,12,18 | B.7,11,19 | C.6,13,17 | D.7,12,17 |
为了解城市居民的环保意识,某调查机构从一社区的120名年轻人、80名中年人、60名老年人中,用分层抽样方法抽取了一个容量为n的样本进行调查,其中老年人抽取了3名,则n=( )
A.13 | B.12 | C.10 | D.9 |
某中学开学后从高一年级学生中随机抽取80名学生进行家庭情况调查,发现有20名学生上次被抽到过,估计这个学校高一年级学生的人数为________.
为了解某地区城镇居民和农村居民对“单独两孩”的看法,某媒体在该地区选择了3600人对是否赞成“单独两孩”的问题进行调查,调查统计的结果如下表:
已知在全体样本中随机抽取1人,抽到持“反对”态度的人的概率为0.05.
(1)现在用分层抽样的方法在所有参与调查的人中抽取360人进行访谈,问应在持“无所谓”态度的人中抽取的人数是多少?
(2)在持“反对”态度的人中,用分层抽样的方法抽取6人,按每组3人分成两组进行深入交流,求第一组中农村居民的人数ξ的分布列.
| 赞成 | 反对 | 无所谓 |
农村居民 | 2100人 | 120人 | y人 |
城镇居民 | 600人 | x人 | z人 |
已知在全体样本中随机抽取1人,抽到持“反对”态度的人的概率为0.05.
(1)现在用分层抽样的方法在所有参与调查的人中抽取360人进行访谈,问应在持“无所谓”态度的人中抽取的人数是多少?
(2)在持“反对”态度的人中,用分层抽样的方法抽取6人,按每组3人分成两组进行深入交流,求第一组中农村居民的人数ξ的分布列.
从某地区15000位老人中随机抽取500人,其生活能否自理的情况如下表所示.
则该地区生活不能自理的老人中男性比女性约多________人.
性 别 人数 生活能否自理 | 男 | 女 |
能 | 178 | 278 |
不能 | 23 | 21 |
则该地区生活不能自理的老人中男性比女性约多________人.