- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 随机抽样
- 普查与抽样
- 总体与样本
- 系统抽样
- 分层抽样
- 三种抽样方法的比较
- 用样本估计总体
- 变量间的相关关系
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某单位有420名职工,现采用系统抽样方法抽取21人做问卷调查,将420人按1,2,…,420随机编号,则抽取的21人中,编号落入区间
的人数为______ .

从8名女生4名男生中,选出3名学生组成课外小组,如果按性别比例分层抽样,则不同的抽取方法数为( )
A.112种 | B.100种 | C.90种 | D.80种 |
某校为了解学生数学学习的情况,采用分层抽样的方法从高一
人、高二
人、高三
人中,抽取
人进行问卷调查,已知高二被抽取的人数为
,那么
( )






A.![]() | B.![]() | C.![]() | D.![]() |
一支田径队有男运动员56人,女运动员42人,用分层抽样的方法从全体运动员中抽出一个容量为28的样本,需抽出的男运动员的人数为 __________.
为加强我市道路交通安全管理,有效净化城市交通环境,预防和减少道路交通事故的发生,交管部门在全市开展电动车专项整治行动值勤交警采取蹲点守候随机抽查的方式,每隔
分钟检查一辆经过的电动车这种抽样方法属于( )

A.简单随机抽样 | B.定点抽样 |
C.分层抽样 | D.系统抽样 |
某学校高一年级有学生
名,高二年级有
学生名.现用分层抽样方法(按高一年级、高二年级分二层)从该校的学生中抽取
名学生,调查他们的数学学习能力.
(Ⅰ)高一年级学生中和高二年级学生中各抽取多少学生?
(Ⅱ)通过一系列的测试,得到这
名学生的数学能力值.分别如表一和表二
表一:
表二:
①确定
,并在答题纸上完成频率分布直方图;
②分别估计该校高一年级学生和高二年级学生的数学能力值的平均数(同一组中的数据用该组区间的中点值作代表);
③根据已完成的频率分布直方图,指出该校高一年级学生和高二年级学生的数学能力值分布特点的不同之处(不用计算,通过观察直方图直接回答结论)



(Ⅰ)高一年级学生中和高二年级学生中各抽取多少学生?
(Ⅱ)通过一系列的测试,得到这

表一:
高一年级 | ![]() | ![]() | ![]() | ![]() | ![]() |
人数 | ![]() | ![]() | ![]() | ![]() | ![]() |
表二:
高二年级 | ![]() | ![]() | ![]() | ![]() | ![]() |
人数 | ![]() | ![]() | ![]() | ![]() | ![]() |
①确定

②分别估计该校高一年级学生和高二年级学生的数学能力值的平均数(同一组中的数据用该组区间的中点值作代表);
③根据已完成的频率分布直方图,指出该校高一年级学生和高二年级学生的数学能力值分布特点的不同之处(不用计算,通过观察直方图直接回答结论)
某省数学学业水平考试成绩共分为
、
、
、
四个等级,在学业水平考试成绩分布后,从该省某地区考生中随机抽取
名考生,统计他们的数学成绩,部分数据如下:
(1)补充完成上述表格的数据;
(2)现按上述四个等级,用分层抽样方法从这
名考生中抽取
名.在这
名考生中,从成绩为
等和
等的所有考生中随机抽取
名,求至少有
名成绩为
等的概率.





等级 | ![]() | ![]() | ![]() | ![]() |
频数 | ![]() | | ![]() | |
频率 | | | | ![]() |
(1)补充完成上述表格的数据;
(2)现按上述四个等级,用分层抽样方法从这








在学校组织的考试中,45名学生的数学成绩的茎叶图如图所示,若将学生按成绩由低到高编为1-45号,再用系统抽样方法从中抽取9人,则其中成绩在区间
上的学生人数是( )



A.4 | B.5 | C.6 | D.7 |
在某超市,随机调查了100名顾客购物时使用手机支付支付的情况,得到如下的
列联表,已知从其中使用手机支付的人群中随机抽取1人,抽到青年的概率为
.
(1)根据已知条件完成
列联表,并根据此资料判断是否有99.9%的把握认为“超市购物用手机支付与年龄有关”.
(2)现按照“使用手机支付”和“不使用手机支付”进行分层抽样,从这100名顾客中抽取容量为5的样本,求“从样本中任选3人,则3人中至少2人使用手机支付”的概率.
附:


(1)根据已知条件完成

(2)现按照“使用手机支付”和“不使用手机支付”进行分层抽样,从这100名顾客中抽取容量为5的样本,求“从样本中任选3人,则3人中至少2人使用手机支付”的概率.
| 青年 | 中老年 | 合计 |
使用手机支付 | | | 60 |
不使用手机支付 | | 28 | |
合计 | | | 100 |
![]() | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
附:
