- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 统计
- 随机抽样
- 用样本估计总体
- 变量间的相关关系
- 统计案例
- 计数原理
- 概率
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某美术学院2018年在山西招生,报名人数很多.工作人员在某个市区抽取了该区2018年美术招生考试成绩中200名学生的色彩和素描的初试成绩,按成绩分组,得到的频率分布表如下图所示.
(1)请先求出频率分布表中①、②位置相应数据,再在答题纸上完成下列频率分布直方图,并由频率分布直方图估算中位数;

(2)为了能更清楚地了解该市学生的情况,该美院决定在复试以前先进行抽样调研.但受场地和教授人数的客观限制,决定从第3组选出3人,第4组选出2人,第5组选出1人,然后从这6人中再选出2人进行调研,求这2人均来自第三组的概率.
组号 | 分组 | 频数 | 频率 |
第1组 | ![]() | 24 | 0.12 |
第2组 | ![]() | ① | 0.18 |
第3组 | ![]() | 64 | 0.32 |
第4组 | ![]() | 60 | ② |
第5组 | ![]() | 16 | 0.08 |
合计 | 200 | 1.00 |
(1)请先求出频率分布表中①、②位置相应数据,再在答题纸上完成下列频率分布直方图,并由频率分布直方图估算中位数;

(2)为了能更清楚地了解该市学生的情况,该美院决定在复试以前先进行抽样调研.但受场地和教授人数的客观限制,决定从第3组选出3人,第4组选出2人,第5组选出1人,然后从这6人中再选出2人进行调研,求这2人均来自第三组的概率.
高三年级有500名学生,为了了解数学科的学习情况,现从中随机抽出若干名学生在一次测试中的数学成绩,制成如下频率分布表:

(1)根据上面图表,①②④处的数值分别为______,______,______;
(2)在所给的坐标系中画出
的频率分布直方图;
(3)根据题中信息估计总体平均数,并估计总体落在
中的概率.
分组 | 频数 | 频率 |
![]() | ① | ② |
![]() | | 0.050 |
![]() | | 0.200 |
![]() | 12 | 0.300 |
![]() | | 0.275 |
![]() | | 0.050 |
合计 | | ④ |

(1)根据上面图表,①②④处的数值分别为______,______,______;
(2)在所给的坐标系中画出

(3)根据题中信息估计总体平均数,并估计总体落在

在一次数学测验后,数学老师将某班全体学生(50人)的数学成绩进行初步统计后交给其班主任(如表).
请你帮助这位班主任完成下面的统计分析工作:
(1)列出频率分布表;
(2)画出频率分布直方图及频率折线图;
(3)从频率分布直方图估计出该班同学成绩的众数、中位数和平均数.
分数 | 50〜60 | 60~70 | 70-80 | 80-90 | 90~100 |
人数 | 2 | 6 | 10 | 20 | 12 |
请你帮助这位班主任完成下面的统计分析工作:
(1)列出频率分布表;
(2)画出频率分布直方图及频率折线图;
(3)从频率分布直方图估计出该班同学成绩的众数、中位数和平均数.
我们知道,地球上的水资源有限,爱护地球、节约用水是我们每个人的义务与责任.某市政府为了对自来水的使用进行科学管理,节约水资源,计划确定一个家庭年用水量的标准.为此,对全市家庭日常用水量的情况进行抽样抽查,获得了
个家庭某年的用水量(单位:立方米),统计结果如下表及图所示.

(1)分别求出
,
的值;
(2)若以各组区间中点值代表该组的取值,试估计全市家庭年均用水量;
(3)从样本中年用水量在
(单位:立方米)的5个家庭中任选3个,作进一步的跟踪研究,求年用水量最多的家庭被选中的概率(5个家庭的年用水量都不相等).


分组 | 频数 | 频率 |
![]() | 25 | |
![]() | | 0.19 |
![]() | 50 | |
![]() | | 0.23 |
![]() | | 0.18 |
![]() | 5 | |
(1)分别求出


(2)若以各组区间中点值代表该组的取值,试估计全市家庭年均用水量;
(3)从样本中年用水量在

某校高三共有1000位学生,为了分析某次的数学考试成绩,采取随机抽样的方法抽取了200位高三学生的成绩进行统计分析得到如图所示频率分布直方图:

(1)计算这些学生成绩的平均值
及样本方差
(同组的数据用该组区间的中点值代替);
(2)由频率分布直方图认为,这次成绩X近似服从正态分布
,其中μ近似为样本平均数
,
近似为样本方差
.
(i)求
;
(ii)从高三学生中抽取10位学生进行面批,记
表示这10位学生成绩在
的人数,利用(i)的结果,求数学期望
.
附:
;
若
,则
,
.

(1)计算这些学生成绩的平均值


(2)由频率分布直方图认为,这次成绩X近似服从正态分布




(i)求

(ii)从高三学生中抽取10位学生进行面批,记



附:

若



某大学生自主创业,经销某种农产品,在一个销售季度内,每售出
该产品获利润800元,未售出的产品,每
亏损200元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.该大学生为下一个销售季度购进了
该农产品.以
(单位:
)表示下一个销售季度内的市场需求量,
(单位:元)表示下一个销售季度内经销该农产品的利润.

(1)将
表示为
的函数;
(2)根据直方图估计利润
不少于94000元的概率;
(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若
,则取
,且
的概率等于需求量落入
的频率),求
的均值.







(1)将


(2)根据直方图估计利润

(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若





2016年9月15中秋节(农历八月十五)到来之际,某月饼销售企业进行了一项网上调查,得到如下数据:
为了进一步了解中秋节期间月饼的消费量,对参与调查的喜欢吃月饼的网友中秋节期间消费月饼的数量进行了抽样调查,得到如下数据:

已知该月饼厂所在销售范围内有30万人,并且该厂每年的销售份额约占市场总量的35%.
(1)试根据所给数据分析,能否有
以上的把握认为,喜欢吃月饼与性别有关?
参考公式与临界值表:
,
其中:
(2)若忽略不喜欢月饼者的消费量,请根据上述数据估计:该月饼厂恰好生产多少吨月饼恰好能满足市场需求?
| 男 | 女 | 合计 |
喜欢吃月饼人数(单位:万人) | 50 | 40 | 90 |
不喜欢吃月饼人数(单位:万人) | 30 | 20 | 50 |
合计 | 80 | 60 | 140 |
为了进一步了解中秋节期间月饼的消费量,对参与调查的喜欢吃月饼的网友中秋节期间消费月饼的数量进行了抽样调查,得到如下数据:

已知该月饼厂所在销售范围内有30万人,并且该厂每年的销售份额约占市场总量的35%.
(1)试根据所给数据分析,能否有

参考公式与临界值表:

其中:

![]() | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
![]() | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
(2)若忽略不喜欢月饼者的消费量,请根据上述数据估计:该月饼厂恰好生产多少吨月饼恰好能满足市场需求?
某校某班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,可见部分如图(已知本次测试成绩满分100分,且均为不低于50分的整数),请根据图表中的信息解答下列问题.

(1)求全班的学生人数及频率分布直方图中分数在[70,80)之间的矩形的高;
(2)为了帮助学生提高数学成绩,决定在班里成立“二帮一”小组,即从成绩[90,100]中选两位同学,共同帮助[50,60)中的某一位同学,已知甲同学的成绩为53分,乙同学的成绩为96分,求甲、乙恰好被安排在同一小组的概率.

(1)求全班的学生人数及频率分布直方图中分数在[70,80)之间的矩形的高;
(2)为了帮助学生提高数学成绩,决定在班里成立“二帮一”小组,即从成绩[90,100]中选两位同学,共同帮助[50,60)中的某一位同学,已知甲同学的成绩为53分,乙同学的成绩为96分,求甲、乙恰好被安排在同一小组的概率.
为推动文明城市创建,提升城市整体形象,2018年12月30日盐城市人民政府出台了《盐城市停车管理办法》,2019年3月1日起施行.这项工作有利于市民养成良好的停车习惯,帮助他们树立绿色出行的意识,受到了广大市民的一致好评.现从某单位随机抽取80名职工,统计了他们一周内路边停车的时间t(单位:小时),整理得到数据分组及频率分布直方图如下:


(1)从该单位随机选取一名职工,试估计这名职工一周内路边停车的时间少于8小时的概率;
(2)求频率分布直方图中a,b的值.


(1)从该单位随机选取一名职工,试估计这名职工一周内路边停车的时间少于8小时的概率;
(2)求频率分布直方图中a,b的值.
在一次模拟考试后,从高三某班随机抽取了20位学生的数学成绩,其分布如下:
分数在130分(包括130分)以上者为优秀,据此估计该班的优秀率约为( )
分组 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | 1 | 2 | 6 | 7 | 3 | 1 |
分数在130分(包括130分)以上者为优秀,据此估计该班的优秀率约为( )
A.10% | B.20% | C.30% | D.40% |