- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 统计
- 随机抽样
- 用样本估计总体
- 变量间的相关关系
- 统计案例
- 计数原理
- 概率
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
从两个班中各随机抽取10名学生,他们的数学成绩如下,通过作茎叶图,分析哪个班学生的数学学习情况更好一些.
甲班 | 76 | 74 | 82 | 96 | 66 | 76 | 78 | 72 | 52 | 68 |
乙班 | 86 | 84 | 62 | 76 | 78 | 92 | 82 | 74 | 88 | 85 |
随着新政策的实施,海淘免税时代于2016年4月8日正式结束,新政策实施后,海外购物的费用可能会增加.为了解新制度对海淘的影响,某网站调查了喜欢海淘的1000名网友,其态度共有两类:第一类是会降低海淘数量,共有400人,第二类是不会降低海淘数量,共有600人,若从这1000人中按照分层抽样的方法抽取10人后进行打分,其打分的茎叶图如下图所示,图中有数据缺失,但已知“第一类”和“第二类”网民打分的均值相等,则“第一类”网民打分的方差为( )


A.159 | B.179 | C.189 | D.209 |
某车间20名工人年龄数据如下表:

(1)求这20名工人年龄的众数与极差;
(2)以这十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;
(3)求这20名工人年龄的方差.

(1)求这20名工人年龄的众数与极差;
(2)以这十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;
(3)求这20名工人年龄的方差.
近几年,我国农村电子商务发展迅速,使得农副产品能够有效地减少流通环节,降低流通成本,直接提高了农民的收益.某农村电商对一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是( )


A.46.5,48,60 | B.47,48,60 |
C.46.5,48,55 | D.46.5,51,60 |
某班A、B两名学生六次数学测验成绩(百分制)如图所示:

①A同学成绩的中位数大于B同学成绩的中位数;
②A同学的平均分比B同学高;
③A同学的平均分比B同学低;
④A同学成绩方差小于B同学的方差,
以上说法中正确的是( )

①A同学成绩的中位数大于B同学成绩的中位数;
②A同学的平均分比B同学高;
③A同学的平均分比B同学低;
④A同学成绩方差小于B同学的方差,
以上说法中正确的是( )
A.③④ | B.①②④ | C.②④ | D.①③④ |
如图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,有个数据被污染了,已知平均数为25,则方差为( )


A.25.2 | B.24.6 | C.32.5 | D.44.6 |
如图茎叶图记录了A、B两名营业员五天的销售业绩,已知两人销售量的平均数相同,则A营业员销售量的方差为( )

A.46 | B.48 | C.50 | D.52 |
某同学将全班某次数学考试成绩整理成频率分布直方图后,并将每个小矩形上方线段的中点连接起来得到频率分布折线图(如图所示),据此估计此次考试成绩的众数是( )

A.100 | B.110 | C.115 | D.120 |
某地在国庆节
天假期中的楼房认购量(单位:套)与成交量(单位:套)的折线图如图所示,小明同学根据折线图对这
天的认购量与成交量作出如下判断:①成交量的中位数为
;②认购量与日期正相关;③日成交量超过日平均成交量的有
天,则上述判断中正确的个数为( )






A.![]() | B.![]() | C.![]() | D.![]() |
某娱乐节目参赛选手分初赛培训、复赛三个阶段选拔,将50位参选手的初赛成绩(总分150分)分成[90,100),[100,110),[110,120),[120,130),[130,140)5组进行统计,得到如图所示的频率分布直方图.

(1)根据频率分析直方图,估算这50个选手初赛成绩的平均分,若节日组规定成绩大于或等于120分的选手可获得节目组组织的培训资格,120分以下(不包括120)的则被淘汰,求这50个人中获得培训资格的人数;
(2)节目组从获得培训资格的人员中选拔部分人员进入复赛.为增加节目的娱乐性,节目组提供了以下两种进入复赛的方式(每位选手只能选择其中一种)
第一种方式:利用分层抽样的方法抽取6名选手参加复赛;
第二种方式:每人最多有5次答题机会,累计答对3题或答错3题终止答题,答对3题可参加复赛
①已知甲的初赛成绩在[120,130)内,他答对每一个问题的概率为
,并且互相之间没有影响甲要想参加复赛,选择那种方式更有利?
②若甲选择第二种方式,求他在答题过程中答题个数X的分布列和数学期望.

(1)根据频率分析直方图,估算这50个选手初赛成绩的平均分,若节日组规定成绩大于或等于120分的选手可获得节目组组织的培训资格,120分以下(不包括120)的则被淘汰,求这50个人中获得培训资格的人数;
(2)节目组从获得培训资格的人员中选拔部分人员进入复赛.为增加节目的娱乐性,节目组提供了以下两种进入复赛的方式(每位选手只能选择其中一种)
第一种方式:利用分层抽样的方法抽取6名选手参加复赛;
第二种方式:每人最多有5次答题机会,累计答对3题或答错3题终止答题,答对3题可参加复赛
①已知甲的初赛成绩在[120,130)内,他答对每一个问题的概率为

②若甲选择第二种方式,求他在答题过程中答题个数X的分布列和数学期望.