- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 统计
- 随机抽样
- 用样本估计总体
- 变量间的相关关系
- 统计案例
- 计数原理
- 概率
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
随着我国中医学的发展,药用昆虫的使用相应愈来愈多.每年春暖以后至寒冬前,是昆虫大量活动与繁殖季节,易于采集各种药用昆虫.已知一只药用昆虫的产卵数
与一定范围内的温度
有关,于是科研人员在3月份的31天中随机挑选了5天进行研究,现收集了该种药用昆虫的5组观测数据如下表:
(1)从这5天中任选2天,记这两天药用昆虫的产卵分别为
,
,求事件“
,
均不小于25”的概率;
(2)科研人员确定的研究方案是:先从这五组数据中任选2组,用剩下的3组数据建立
关于
的线性回归方程,再对被选取的2组数据进行检验.
(ⅰ)若选取的是3月2日与30日的两组数据,请根据3月7日、15日和22日这三天的数据,求出
关于
的线性回归方程;
(ⅱ)若由线性回归方程得到的估计数据与选出的检验数据的误差均不超过2个,则认为得到的线性回归方程是可靠的,试问(ⅰ)中所得的线性回归方程是否可靠?
附:回归直线的斜率和截距的最小二乘估计公式分别为
,
.


日期 | 2日 | 7日 | 15日 | 22日 | 30日 |
温度![]() | 10 | 11 | 13 | 12 | 8 |
产卵数![]() | 23 | 25 | 30 | 26 | 16 |
(1)从这5天中任选2天,记这两天药用昆虫的产卵分别为




(2)科研人员确定的研究方案是:先从这五组数据中任选2组,用剩下的3组数据建立


(ⅰ)若选取的是3月2日与30日的两组数据,请根据3月7日、15日和22日这三天的数据,求出


(ⅱ)若由线性回归方程得到的估计数据与选出的检验数据的误差均不超过2个,则认为得到的线性回归方程是可靠的,试问(ⅰ)中所得的线性回归方程是否可靠?
附:回归直线的斜率和截距的最小二乘估计公式分别为


从甲、乙两班各随机抽取10名同学,如图所示的茎叶图记录了这20名同学在2018年高考语文作文题目中的成绩(单位:分).已知语文作文题目满分为60分,“分数
分,为及格:分数
分,为高分”,若甲、乙两班的成绩的平均分都是44分.

(1)求
,
的值;
(2)若分别从甲、乙两班随机各抽取1名成绩为高分的学生,求抽到的学生中,甲班学生成绩高于乙班学生成绩的概率.



(1)求


(2)若分别从甲、乙两班随机各抽取1名成绩为高分的学生,求抽到的学生中,甲班学生成绩高于乙班学生成绩的概率.
《汉字听写大会》不断创收视新高,为了避免“书写危机”,弘扬传统文化,某市大约10万名市民进行了汉字听写测试.现从某社区居民中随机抽取50名市民的听写测试情况.发现被测试市民正确书写汉字的个数全部在160到184之间,将测试结果按如下方式分成六组:第1组
,第2组
,…,第6组
,如图是按上述分组方法得到的频率分布直方图.

(1)试估计该市市民正确书写汉字的个数的平均数与中位数;
(2)已知第4组市民中有3名男性,组织方要从第4组中随机抽取2名市民组成弘扬传统文化宣传队,求至少有1名女性市民的概率.




(1)试估计该市市民正确书写汉字的个数的平均数与中位数;
(2)已知第4组市民中有3名男性,组织方要从第4组中随机抽取2名市民组成弘扬传统文化宣传队,求至少有1名女性市民的概率.




A.![]() ![]() ![]() | B.![]() ![]() ![]() |
C.![]() ![]() ![]() | D.![]() ![]() ![]() |
2015年年岁史诗大剧《芈月传》风靡大江南北,影响力不亚于以前的《甄嬛传》.某记者调查了大量《芈月传》的观众,发现年龄段与爱看的比例存在较好的线性相关关系,年龄在
,
,
,
,
的爱看比例分别为
,
,
,
,
.现用这5个年龄段的中间值
代表年龄段,如12代表
,
代表
,根据前四个数据求得
关于爱看比例
的线性回归方程为
,由此可推测
的值为( )


















A.![]() | B.![]() | C.![]() | D.![]() |
设有一个回归方程为
,则变量x增加一个单位时( )

A.y平均增加3个单位 | B.y平均减少4个单位 |
C.y平均增加4个单位 | D.y平均减少3个单位 |
某公司为了提高利润,从2014年至2018年每年对生产环节的改进进行投资,投资金额与年利润增长的数据如下表:
(1)请用最小二乘法求出y关于x的回归直线方程;
(2)如果2020年该公司计划对生产环节的改进的投资金额为8万元,估计该公司在该年的年利润增长为多少?
参考公式:
,
参考数据:
,
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
投资金额x(万元) | 5 | 5.5 | 6 | 6.5 | 7 |
年利润增长y(万元) | 7.5 | 8 | 9 | 10 | 11.5 |
(1)请用最小二乘法求出y关于x的回归直线方程;
(2)如果2020年该公司计划对生产环节的改进的投资金额为8万元,估计该公司在该年的年利润增长为多少?
参考公式:




在某次测量中得到的A样本数据如下:82,84,84,86,86,86,88,88,88,88.若B样本数据恰好是A样本数据都加2后所得数据,则A,B两样本的下列数字特征对应相同的是
A.众数 | B.平均数 | C.中位数 | D.标准差 |
某学校高一、高二、高三年级的学生人数之比为3∶3∶4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取________名学生.
具有线性相关关系的变量x,y,满足一组数据如表所示,若y与x的回归直线方程为
,则m的值( )

x | 0 | 1 | 2 | 3 |
y | ![]() | 1 | m | 8 |
A.4 | B.![]() | C.5 | D.6 |