- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 统计
- 随机抽样
- 用样本估计总体
- 变量间的相关关系
- 统计案例
- 计数原理
- 概率
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
下表是某校120名学生假期阅读时间(单位: 小时)的频率分布表,现用分层抽样的方法从
,
,
,
四组中抽取20名学生了解其阅读内容,那么从这四组中依次抽取的人数是( )




分组 | 频数 | 频率 |
![]() | 12 | 0.10 |
![]() | 30 | ![]() |
![]() | ![]() | 0.40 |
![]() | n | 0.25 |
合计 | 120 | 1.00 |
A.2,5,8,5 | B.2,5,9,4 | C.4,10,4,2 | D.4,10,3,3 |
某协会有200名会员,现要从中抽取40名会员作样本,采用系统抽样法等间距抽取样本,将全体会员随机按1~200编号,并按编号顺序平均分为40组(1-5号,6-10号,…,196-200号).若第5组抽出的号码为22,则第1组至第3组抽出的号码依次是( )
A.3,8,13 | B.2,7,12 | C.3,9,15 | D.2,6,12 |
为了了解在一个小水库中鱼的养殖情况,从这个小水库中的多处不同位置捕捞出100条鱼,将这100条鱼做一记号后再放回水库. 几天后再从水库的不同位置捕捞出120条鱼,其中带有记号的鱼有6条. 根据上述样本,我们可以估计小水库中鱼的总条数约为( )
A.20000 | B.6000 | C.12000 | D.2000 |
以下茎叶图记录了甲、乙两个篮球队在3次不同比赛中的得分情况.乙队记录中有一个数字模糊,无法确认,假设这个数字具有随机性,并在图中以m表示.那么在3次比赛中,乙队平均得分超过甲队平均得分的概率是( )
甲队 | | 乙队 |
8 | 7 | |
3 2 | 8 | 0 3 ![]() |
A.![]() | B.![]() | C.![]() | D.![]() |
北京是我国严重缺水的城市之一.为了倡导“节约用水,从我做起”,小明在他所在学校的2000名同学中,随机调查了40名同学家庭中一年的月均用水量(单位:吨),并将月均用水量分为6组:
,
,
,
,
,
加以统计,得到如图所示的频率分布直方图.

(1)给出图中实数a的值;
(2)根据样本数据,估计小明所在学校2000名同学家庭中,月均用水量低于8吨的约有多少户;
(3)在月均用水量大于或等于10吨的样本数据中,小明决定随机抽取2名同学家庭进行访谈,求这2名同学中恰有1人所在家庭的月均用水量属于
组的概率.







(1)给出图中实数a的值;
(2)根据样本数据,估计小明所在学校2000名同学家庭中,月均用水量低于8吨的约有多少户;
(3)在月均用水量大于或等于10吨的样本数据中,小明决定随机抽取2名同学家庭进行访谈,求这2名同学中恰有1人所在家庭的月均用水量属于

某单位有职工
人,其中青年职工
人,中年职工
人,老年职工
人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本 . 若样本中的青年职工为
人,则样本容量为 .





某校为了解高三学生身体素质情况,从某项体育测试成绩中随机抽取
个学生成绩进行分析,得到成绩频率分布直方图(如图所示),已知成绩在
的学生人数为8,则
的值为( )





A.40 | B.50 | C.60 | D.70 |
下列说法:①若线性回归方程为
,则当变量
增加一个单位时,
一定增加3个单位;②将一组数据中的每个数据都加上同一个常数后,方差不会改变;③线性回归直线方程
必过点
;④抽签法属于简单随机抽样;其中错误的说法是( )





A.①③ | B.②③④ | C.① | D.①②④ |
某学校的老师配置及比例如图所示,为了调查各类老师的薪资状况,现采用分层抽样的方法抽取部分老师进行调查,在抽取的样本中,青年老师有30人,则该样本中的老年教师人数为( )


A.![]() | B.![]() | C.![]() | D.![]() |
篮球运动员甲在某赛季前15场比赛的得分如表:
则这15场得分的中位数和众数分别为( )
得分 | 8 | 13 | 18 | 22 | 28 | 33 | 37 |
频数 | 1 | 3 | 4 | 1 | 3 | 1 | 2 |
则这15场得分的中位数和众数分别为( )
A.22,18 | B.18,18 | C.22,22 | D.20,18 |