- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 统计
- 随机抽样
- 用样本估计总体
- 变量间的相关关系
- 统计案例
- 计数原理
- 概率
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求图中
的值;
(2)根据频率分布直方图,估计这100名学生语文成绩的平均分,众数,中位数;
(3)若这100名学生语文成绩某些分数段的人数(
)与数学成绩相应分数段的人数(
)之比如下表所示,求数学成绩在[50,90)之外的人数.

(1)求图中

(2)根据频率分布直方图,估计这100名学生语文成绩的平均分,众数,中位数;
(3)若这100名学生语文成绩某些分数段的人数(


分数段 | [50,60) | [60,70) | [70,80) | [80,90) |
![]() | 1:1 | 2:1 | 3:4 | 4:5 |

某人5次上班途中所花的时间(单位:分钟)分别为x,y,10,11,9.已知这组数据的平均数为10,方差为2,则|x﹣y|的值为_____ .
如图是统计某样本数据得到的频率分布直方图.已知该样本容量为300,根据此样本的频率分布直方图,估计样本数据落在[10,18)内的频数为( )


A.36 | B.48 | C.120 | D.144 |
某高中三个年级共有3000名学生,现采用分层抽样的方法从高一、高二、高三年级的全体学生中抽取一个容量为30的样本进行视力健康检查,若抽到的高一年级学生人数与高二年级学生人数之比为3∶2,抽到高三年级学生10人,则该校高二年级学生人数为( )
A.600 | B.800 | C.1000 | D.1200 |
某校统计了1000名学生的数学期末考试成绩,已知这1000名学生的成绩均在50分到150分之间,其频率分布直方图如图所示,则这1000名学生中成绩在130分以上的人数为( )


A.10 | B.20 | C.40 | D.60 |
近年来,某地大力发展文化旅游创意产业,创意维护一处古寨,几年来,经统计,古寨的使用年限x(年)和所支出的维护费用y(万元)的相关数据如图所示,根据以往资料显示y对x呈线性相关关系.

(1)求出y关于x的回归直线方程
;
(2)试根据(1)中求出的回归方程,预测使用年限至少为几年时,维护费用将超过10万元?
参考公式:对于一组数据
,
,…,
,其回归方程
的斜率和截距的最小二乘估计分别为
.

(1)求出y关于x的回归直线方程

(2)试根据(1)中求出的回归方程,预测使用年限至少为几年时,维护费用将超过10万元?
参考公式:对于一组数据





已知变量x,y的取值如下表:
由散点图分析可知y与x线性相关,且求得回归直线的方程为
,据此可预测:当
时,y的值约为( )
x | 1 | 2 | 3 | 4 | 5 |
y | 10 | 15 | 30 | 45 | 50 |
由散点图分析可知y与x线性相关,且求得回归直线的方程为


A.63 | B.74 | C.85 | D.96 |
某高中三年级有A、B两个班,各有50名同学,这两个班参加能力测试,成绩统计结果如表:
A、B班成绩的频数分布表
(1)试估计A、B两个班的平均分;
(2)统计学中常用M值作为衡量总体水平的一种指标,已知M与分数t的关系式为:M
.
分别求这两个班学生成绩的M总值,并据此对这两个班的总体水平作简单评价.
A、B班成绩的频数分布表
分组 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
A班频数 | 4 | 8 | 23 | 9 | 6 |
B班频数 | 7 | 12 | 13 | 10 | 8 |
(1)试估计A、B两个班的平均分;
(2)统计学中常用M值作为衡量总体水平的一种指标,已知M与分数t的关系式为:M

分别求这两个班学生成绩的M总值,并据此对这两个班的总体水平作简单评价.
某人第一年月资为7000元,各种用途占比统计如图的条形图,第二年,他加强了体育锻炼,月工资的各种用途占比统计如图的折线图,已知第二年的月就医费比第一年月就医费少100元,则他第二年的月工资为( )


A.7000元 | B.8500元 | C.9500元 | D.10500元 |
某消费品企业销售部对去年各销售地的居民年收入(即此地所有居民在一年内的收入的总和)及其产品销售额进行抽样分析,收集数据整理如下:

(1)在图a中作出这些数据的散点图,并指出y与x成正相关还是负相关?
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程?
(3)若B地今年的居民年收入将增长20%,预测B地今年的销售额将达到多少万元?
回归方程系数公式:
,
.
参考数据:
,
.
销售地 | A | B | C | D |
年收入x(亿元) | 15 | 20 | 35 | 50 |
销售额y(万元) | 16 | 20 | 40 | 48 |

(1)在图a中作出这些数据的散点图,并指出y与x成正相关还是负相关?
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程?
(3)若B地今年的居民年收入将增长20%,预测B地今年的销售额将达到多少万元?
回归方程系数公式:


参考数据:

