- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 统计
- 统计案例
- 计数原理
- 概率
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某校高三(1)班在一次单元测试中,每位同学的考试分数都在区间
内,将该班所有同学的考试分数分为七组:
,绘制出频率分布直方图如图所示,已知分数低于112 分的有18人,则分数不低于120分的人数为( )




A.10 | B.12 | C.20 | D.40 |
某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:
(1)求出
关于
的线性回归方程
,并在坐标系中画出回归直线;

(2)试预测加工
个零件需要多少小时?
(注:
,
,
,
)
零件的个数![]() | 2 | 3 | 4 | 5 |
加工的时间![]() | 2.5 | 3 | 4 | 4.5 |
(1)求出




(2)试预测加工

(注:




有40件产品,编号从1到40,从中抽取4件检验,用系统抽样方法确定所抽的编号可能为()
A.5,10,15,20 | B.5,8,31,36 |
C.2,14,26,38 | D.2,12,22,32 |
在集合
中,任取
个元素构成集合
. 若
的所有元素之和为偶数,则称
为
的偶子集,其个数记为
;若
的所有元素之和为奇数,则称
为
的奇子集,其个数记为
. 令
(1)当
时,求
的值;
(2)求
.












(1)当


(2)求

甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为



(Ⅰ)求乙投球的命中率

(Ⅱ)若甲投球1次,乙投球2次,两人共命中的次数记为


为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名.从这8名运动员中随机选择4人参加比赛.
(1)设
为事件“选出的4人中恰有2 名种子选手,且这2名种子选手来自同一个协会”,求事件
发生的概率;
(2)设
为选出的4人中种子选手的人数,求随机变量
的分布列和数学期望.
(1)设


(2)设


袋中有大小、质地均相同的4个红球与2个白球.若从中有放回地依次取出一个球,记6次取球中取出红球的次数为ξ,则ξ的期望E(ξ)=________.