- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 统计
- 统计案例
- 计数原理
- 概率
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
了应对新疆暴力恐怖活动,重庆市警方从武警训练基地挑选反恐警察,从体能、射击、反应三项指标进行检测,如果这三项中至少有两项通过即可入选.假定某基地有4名武警战士(分别记为
)拟参加挑选,且每人能通过体能、射击、爆破的概率分别为
.这三项测试能否通过相互之间没有影响.
(1)求
能够入选的概率;
(2)规定:按入选人数得训练经费,每入选1人,则相应的训练基地得到5000元的训练经费,求该基地得到训练经费的分布列与数学期望(期望精确到个位).


(1)求

(2)规定:按入选人数得训练经费,每入选1人,则相应的训练基地得到5000元的训练经费,求该基地得到训练经费的分布列与数学期望(期望精确到个位).
现有甲、乙两个靶,某射手向甲靶射击一次,命中的概率为
,命中得1分,没有命中得﹣1分;向乙靶射击两次,每次命中的概率为
,每命中一次得2分,没有命中得0分.该射手每次射击的结果相互独立,假设该射手完成以上三次射击,则该射手得3分的概率为________.


一用户在打电话时忘了号码的最后四位数字,只记得最后四位数字两两不同,且都大于5,于是他随机拨最后四位数字(两两不同),设他拨到所要号码时已拨的次数为ξ,则随机变量ξ的所有可能取值的种数为( )
A.20 | B.24 |
C.4 | D.18 |
甲、乙两名射击运动员进行射击比赛,射击次数相同,已知两名运动员击中的环数X稳定在7环,8环,9环,10环,他们比赛成绩的统计结果如下:

请你根据上述信息,解决下列问题:
(1)估计甲、乙两名射击运动员击中的环数都不少于9环的概率;
(2)若从甲、乙运动员中只能任选一名参加某大型比赛,请你从随机变量均值意义的角度,谈谈让谁参加比较合适?

请你根据上述信息,解决下列问题:
(1)估计甲、乙两名射击运动员击中的环数都不少于9环的概率;
(2)若从甲、乙运动员中只能任选一名参加某大型比赛,请你从随机变量均值意义的角度,谈谈让谁参加比较合适?
今有两台独立工作在两地的雷达,每台雷达发现飞行目标的概率分别为0.9和0.85,设发现目标的雷达台数为X,则E(X)= ( )
A.0.765 | B.1.75 |
C.1.765 | D.0.22 |
一个袋中装有5个白球和5个黑球,从中任取3个,其中所含白球的个数为ξ.
(1)列表说明可能出现的结果与对应的ξ的值;
(2)若规定抽取3个球中,每抽到一个白球加5分,抽到黑球不加分,且最后不管结果都加上6分,求最终得分η的可能取值,并判定η的随机变量类型.
(1)列表说明可能出现的结果与对应的ξ的值;
(2)若规定抽取3个球中,每抽到一个白球加5分,抽到黑球不加分,且最后不管结果都加上6分,求最终得分η的可能取值,并判定η的随机变量类型.