- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 统计
- 统计案例
- 计数原理
- 概率
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在英国的某一娱乐节目中,有一种过关游戏,规则如下:转动图中转盘(一个圆盘四等分,在每块区域内分别标有数字1,2,3,4),由转盘停止时指针所指数字决定是否过关.在闯
关时,转
次,当次转得数字之和大于
时,算闯关成功,并继续闯关,否则停止闯关,闯过第一关能获得10欧元,之后每多闯一关,奖金翻倍,假设每个参与者都会持续闯关到不能过关为止,并且转盘每次转出结果相互独立.
(1)求某人参加一次游戏,恰好获得10欧元的概率;
(2)某人参加一次游戏,获得奖金
欧元,求
的概率分布和数学期望.



(1)求某人参加一次游戏,恰好获得10欧元的概率;
(2)某人参加一次游戏,获得奖金



甲、乙两人想参加《中国诗词大会》比赛,筹办方要从10首诗司中分别抽出3首让甲、乙背诵,规定至少背出其中2首才算合格; 在这10首诗词中,甲只能背出其中的7首,乙只能背出其中的8首
(1)求抽到甲能背诵的诗词的数量
的分布列及数学期望;
(2)求甲、乙两人中至少且有一人能合格的概率.
(1)求抽到甲能背诵的诗词的数量

(2)求甲、乙两人中至少且有一人能合格的概率.
某建材公司在
,
两地各有一家工厂,它们生产的建材由公司直接运往
地.由于土路交通运输不便,为了减少运费,该公司预备投资修建一条从
地或
地直达
地的公路;若选择从某地修建公路,则另外一地生产的建材可先运输至该地再运至
以节约费用.已知
,
之间为土路,土路运费为每吨千米20元,公路的运费减半,
,
,
三地距离如图所示.为了制定修路计划,公司统计了最近10天两个工厂每天的建材产量,得到下面的柱形图,以两个工厂在最近10天日产量的频率代替日产量的概率.
(1)求“
,
两地工厂某天的总日产量为20吨”的概率;
(2)以修路后每天总的运费的期望为依据,判断从
,
哪一地修路更加划算.












(1)求“


(2)以修路后每天总的运费的期望为依据,判断从



为了普及环保知识,增强环保意识,某校从理科甲班抽取60人,从文科乙班抽取50人参加环保知识测试.
(Ⅰ)根据题目完成
列联表,并据此判断是否有
的把握认为环保知识成绩优秀与学生的文理分类有关.
(Ⅱ)现已知
,
,
三人获得优秀的概率分别为
,
,
,设随机变量
表示
,
,
三人中获得优秀的人数,求
的分布列及期望
.
附:
,
| 优秀人数 | 非优秀人数 | 总计 |
甲班 | | | |
乙班 | | 30 | |
总计 | 60 | | |
(Ⅰ)根据题目完成


(Ⅱ)现已知












附:


![]() | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 |
![]() | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
在某次联考数学测试中,学生成绩
服从正态分布
,若
在
内的概率为0.8,则任意选取一名学生,该生成绩不高于80的概率为( )




A.0.05 | B.0.1 | C.0.15 | D.0.2 |
某印刷厂的打印机每5年需淘汰一批旧打印机并购买新机,买新机时,同时购买墨盒,每台新机随机购买第一盒墨150元,优惠0元;再每多买一盒墨都要在原优惠基础上多优惠一元,即第一盒墨没有优惠,第二盒墨优惠一元,第三盒墨优惠2元,……,依此类推,每台新机最多可随新机购买25盒墨.平时购买墨盒按零售每盒200元.
以这十台打印机消耗墨盒数的频率代替一台打印机消耗墨盒数发生的概率,记ξ表示两台打印机5年消耗的墨盒数.
(1)求ξ的分布列;
(2)若在购买两台新机时,每台机随机购买23盒墨,求这两台打印机正常使用五年在消耗墨盒上所需费用的期望.
公司根据以往的记录,十台打印机正常工作五年消耗墨盒数如下表:
消耗墨盒数 | 22 | 23 | 24 | 25 |
打印机台数 | 1 | 4 | 4 | 1 |
以这十台打印机消耗墨盒数的频率代替一台打印机消耗墨盒数发生的概率,记ξ表示两台打印机5年消耗的墨盒数.
(1)求ξ的分布列;
(2)若在购买两台新机时,每台机随机购买23盒墨,求这两台打印机正常使用五年在消耗墨盒上所需费用的期望.
在汶川大地震后对唐家山堰塞湖的抢险过程中,武警官兵准备用射击的方法引爆从湖坝上游漂流而下的一个巨大的汽油罐.已知只有5发子弹,第一次命中只能使汽油流出,第二次命中才能引爆.每次射击是相互独立的,且命中的概率都是
.
(1)求油罐被引爆的概率;
(2)如果引爆或子弹打光则停止射击,设射击次数为
,求
的分布列及
.( 结果用分数表示)

(1)求油罐被引爆的概率;
(2)如果引爆或子弹打光则停止射击,设射击次数为


