- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 由圆心(或半径)求圆的方程
- 求过已知三点的圆的标准方程
- + 由标准方程确定圆心和半径
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
公元前3世纪,古希腊数学家阿波罗尼斯在前人的基础上写了一部划时代的著作《圆锥曲线论》,该书给出了当时数学家们所研究的六大轨迹问题,其中之一便是“到两个定点的距离之比等于不为1的常数的轨迹是圆”,简称“阿氏圆”.用解析几何方法解决“到两个定点
,
的距离之比为
的动点
轨迹方程是:
”,则该“阿氏圆”的圆心坐标是______,半径是_____.





圆(x+1)2+(y-2)2=4的圆心坐标和半径分别为( )
A.(-1,2),2 | B.(1,-2),2 |
C.(-1,2),4 | D.(1,-2),4 |