刷题首页
题库
高中数学
题干
公元前3世纪,古希腊数学家阿波罗尼斯在前人的基础上写了一部划时代的著作《圆锥曲线论》,该书给出了当时数学家们所研究的六大轨迹问题,其中之一便是“到两个定点的距离之比等于不为1的常数的轨迹是圆”,简称“阿氏圆”.用解析几何方法解决“到两个定点
,
的距离之比为
的动点
轨迹方程是:
”,则该“阿氏圆”的圆心坐标是______,半径是_____.
上一题
下一题
0.99难度 填空题 更新时间:2019-07-05 08:31:28
答案(点此获取答案解析)
同类题1
圆
的半径为______.若直线
与圆
交于两点,则
的取值范围是______.
同类题2
圆
x
2
+
y
2
﹣2
x
﹣2
ay
﹣1=0(
a
为常数)的圆心是_____;半径是_____.
同类题3
已知以圆
的圆心为焦点的抛物线
与圆
在第一象限交于
点,
点是抛物线:
上任意一点,
与直线
垂直,垂足为
,则
的最大值为( )
A.1
B.2
C.
D.8
同类题4
圆
的圆心和半径分别为( )
A.
B.
C.
D.
同类题5
已知圆
,则其圆心和半径分别为( ).
A.
,
B.
,
C.
,
D.
,
相关知识点
平面解析几何
圆与方程
圆的方程
圆的标准方程
由标准方程确定圆心和半径
圆的一般方程与标准方程之间的互化