- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 相交直线的交点坐标
- 两点间的距离公式
- + 点到直线的距离公式
- 求点到直线的距离
- 直线围成图形的面积问题
- 已知点到直线距离求参数
- 求到两点距离相等的直线方程
- 求点关于直线的对称点
- 求两点的对称轴
- 光线反射问题(2)——直线关于直线对称
- 坐标法的应用——点到直线的距离
- 两条平行线间的距离公式
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知平面直角坐标系
中,直线
的参数方程为
(
为参数,
且
),以原点
为极点,
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.已知直线
与曲线
交于
两点,且
.
(1)求
的大小;
(2)过
分别作
的垂线与
轴交于
两点,求
.














(1)求

(2)过





在直角坐标系xOy中,曲线C1:
(α为参数),以O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ2-4ρcosθ-3=0,直线l的极坐标方程为θ=
(ρ∈R).
(Ⅰ)求曲线C1的极坐标方程与直线l的直角坐标方程;
(Ⅱ)若直线l与曲线C1,C2在第一象限分别交于A,B两点,P为曲线C1上的动点,求△PAB面积的最大值.


(Ⅰ)求曲线C1的极坐标方程与直线l的直角坐标方程;
(Ⅱ)若直线l与曲线C1,C2在第一象限分别交于A,B两点,P为曲线C1上的动点,求△PAB面积的最大值.
圆x2+y2-2x-6y+9=0关于直线x-y-1=0对称的曲线方程是( )
A.x2+y2+2x+6y+9=0 | B.x2+y2-6x-2y+9=0 |
C.x2+y2-8x+15=0 | D.x2+y2-8y-15=0 |
已知圆
:
关于直线
:
对称的圆为
.
(Ⅰ)求圆
的方程;
(Ⅱ)过点
作直线
与圆
交于
,
两点,
是坐标原点,是否存在这样的直线
,使得在平行四边形
(
和
为对角线)中
?若存在,求出所有满足条件的直线
的方程;若不存在,请说明理由.





(Ⅰ)求圆

(Ⅱ)过点












在平面直角坐标系
中,曲线
的参数方程为
,其中
为参数,在以坐标原点
为极点,
轴的正半轴为极轴的极坐标系中,点
的极坐标为
, 直线
的极坐标方程为
.
(1)求直线
的直角坐标方程与曲线
的普通方程;
(2)若
是曲线
上的动点,
为线段
的中点.求点
到直线
的距离的最大值.










(1)求直线


(2)若





