- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 相交直线的交点坐标
- + 两点间的距离公式
- 求平面两点间的距离
- 由顶点坐标判断三角形的形状
- 由距离求点的坐标
- 用两点间的距离公式求函数最值
- 点到直线的距离公式
- 两条平行线间的距离公式
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
著名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事休.”事实上,有很多代数问题可以转化为几何问题加以解决,如:
可以转化为平面上点
与点
的距离.
结合上述观点,可得
的最小值为( )



结合上述观点,可得

A.![]() | B.![]() | C.![]() | D.![]() |
已知双曲线C1:
-
=1.
(1)若点M(3,t)在双曲线C1上,求M点到双曲线C1右焦点的距离;
(2)求与双曲线C1有共同渐近线,且过点(-3,2
)的双曲线C2的标准方程.


(1)若点M(3,t)在双曲线C1上,求M点到双曲线C1右焦点的距离;
(2)求与双曲线C1有共同渐近线,且过点(-3,2
