- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 直线的倾斜角
- + 斜率公式
- 已知两点求斜率
- 已知斜率求参数
- 斜率公式的应用
- 两条直线的到(夹)角公式
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
的长轴两端点为
,
,离心率为
,
,
分别是椭圆
的左,右焦点,且
.
(1)求椭圆的标准方程;
(2)设
,
是椭圆
上两个不同的点,若直线
在
轴上的截距为
,且
,
的斜率之和等于
,求直线
的方程.








(1)求椭圆的标准方程;
(2)设










若直线y=k(x﹣1)与椭圆
交于A,B两点,若对于任意实数k,x轴上存在点M(m,0),使得直线AM,BM关于x轴对称,则m=( )

A.![]() | B.![]() | C.2 | D.﹣2 |
已知椭圆
的离心率为
,
是椭圆
的一个焦点.点
,直线
的斜率为
.
(1)求椭圆
的方程;
(2)若过点
的直线
与椭圆
交于
两点,线段
的中点为
,且
.求
的方程.







(1)求椭圆

(2)若过点







