- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 直线与方程
- 直线的倾斜角与斜率
- 直线的方程
- 直线的交点坐标与距离公式
- 直线综合
- 圆与方程
- 圆锥曲线
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设有一条光线从
射出,并且经
轴上一点
反射.
(1)求入射光线和反射光线所在的直线方程(分别记为
);
(2)设动直线
,当点
到
的距离最大时,求
所围成的三角形的内切圆(即:圆心在三角形内,并且与三角形的三边相切的圆)的方程.



(1)求入射光线和反射光线所在的直线方程(分别记为

(2)设动直线




(1)已知
三个顶点的坐标分别为
,
,
,边
的中点为
,求
边上中线
所在的直线方程并化为一般式;
(2)已知圆
的圆心是直线
和
的交点且圆
与直线
相切,求圆
的方程.








(2)已知圆






选修4-4:坐标系与参数方程
在平面直角坐标系
中,已知曲线
(
为参数),在以原点
为极点,
轴的非负半轴为极轴建立的极坐标系中,直线
的极坐标方程为
.
(1)求曲线
的普通方程和直线
的直角坐标方程;
(2)过点
且与直线
平行的直线
交
于
,
两点,求点
到
,
两点的距离之积.
在平面直角坐标系







(1)求曲线


(2)过点









若对于任意一组实数
都有唯一一个实数
与之对应,我们把
称为变量
的函数,即
,其中
均为自变量,为了与所学过的函数加以区别,称该类函数为二元函数,现给出二元函数
,则此函数的最小值为__________.








在平面直角坐标系中,直线
不过原点,且与椭圆
有两个不同的公共点
.
(Ⅰ)求实数
取值所组成的集合
;
(Ⅱ)是否存在定点
使得任意的
,都有直线
的倾斜角互补.若存在,求出所有定点
的坐标;若不存在,请说明理由.



(Ⅰ)求实数


(Ⅱ)是否存在定点



