- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 空间直角坐标系
- + 空间向量及其运算
- 空间向量的有关概念
- 空间共线向量定理
- 空间共面向量定理
- 空间向量的数乘运算
- 空间向量的数量积运算
- 空间向量的正交分解与坐标表示
- 空间向量运算的坐标表示
- 空间向量的应用
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
若向量{a,b,c}是空间的一个基底,则一定可以与向量p=2a+b,q=2a-b构成空间的另一个基底的向量是( )
A.a | B.b | C.c | D.a+b |
已知A(-1,1,2),B(1,0,-1),设D在直线AB上,且
,设C(λ,
+λ,1+λ),若CD⊥AB,则λ的值为( )


A.![]() | B.-![]() | C.![]() | D.![]() |
若e1、e2、e3是三个不共面向量,则向量a=3e1+2e2+e3,b=-e1+e2+3e3,c=2e1-e2-4e3是否共面?请说明理由.
已知点A,B,C的坐标分别为(0,1,0),(-1,0,-1),(2,1,1),点P的坐标为(x,0,z),若PA⊥AB,PA⊥AC,则点P的坐标为_______.