- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 求空间中两点间的距离
- + 空间距离公式的应用
- 三元方程及其图形
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
的左、右焦点分别为
、
.经过点
且倾斜角为
的直线
与椭圆
交于
、
两点(其中点
在
轴上方),
的周长为8.
(1)求椭圆
的标准方程;
(2)如图,把平面
沿
轴折起来,使
轴正半轴和
轴确定的半平面,与
负半轴和
轴所确定的半平面互相垂直.
①若
,求异面直线
和
所成角的大小;
②若折叠后
的周长为
,求
的大小.












(1)求椭圆

(2)如图,把平面






①若



②若折叠后



在空间直角坐标系Oxyz中,y轴上一点M到点P(1,0,2)和点Q(1,-3,1)的距离相等,则点M的坐标为(
A.(0,-2,0) | B.(0,-1,0) | C.(0,1,0) | D.(0,2,0) |
如图,空间直角坐标系中,四棱锥
的底面是边长为
的正方形,且底面在
平面内,点
在
轴正半轴上,
平面
,侧棱
与底面所成角为45°;

(1)若
是顶点在原点,且过
、
两点的抛物线上的动点,试给出
与
满足的关系式;
(2)若
是棱
上的一个定点,它到平面
的距离为
(
),写出
、
两点之间的距离
,并求
的最小值;
(3)是否存在一个实数
(
),使得当
取得最小值时,异面直线
与
互相垂直?请说明理由;









(1)若





(2)若









(3)是否存在一个实数




