- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 判断不等式是否为二元一次不等式
- 画(判断)不等式(组)表示的可行域
- 判断点是否在可行域内
- 根据点与直线(可行域)的位置关系求参数
- 由可行域确定不等式(组)
- 求可行域的面积
- 根据可行域的形状(面积)求参数
- + 可行域内整点的个数
- 画含绝对值不等式的可行域
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设不等式组
所表示的平面区域为
,记
内的整点个数为
,(整点即横、纵坐标均为整数的点)
(1)计算
的值;
(2)求数列
的通项公式
;
(3)记数列
的前
项和为
,且
,若对于一切的正整数
,总有
,求实数
的取值范围.




(1)计算

(2)求数列


(3)记数列







已知在直角坐标系中,
,其中数列{an},{bn}都是递增数列.
(1)若an=2n+1,bn=3n+1,判断直线A1B1与A2B2是否平行;
(2)若数列{an},{bn}都是正项等差数列,设四边形AnBnBn+1An+1的面积为Sn(n∈N*),求证:{Sn}也是等差数列;
(3)若
12,记直线AnBn的斜率为kn,数列{kn}的前8项依次递减,求满足条件的数列{bn}的个数.

(1)若an=2n+1,bn=3n+1,判断直线A1B1与A2B2是否平行;
(2)若数列{an},{bn}都是正项等差数列,设四边形AnBnBn+1An+1的面积为Sn(n∈N*),求证:{Sn}也是等差数列;
(3)若

设不等式组
所表示的平面区域为
,记
内的格点(格点即横坐标和纵坐标均为整数的点)的个数为
.
(1)求
、
的值及
的表达式;
(2)设
,
为
的前
项和,求
.




(1)求



(2)设




