- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 一元二次不等式的解法
- + 一元二次不等式恒成立问题
- 一元二次不等式与二次函数、一元二次方程的关系
- 一元二次不等式在实数集上恒成立问题
- 一元二次不等式在某区间上的恒成立问题
- 一元二次不等式在某区间上有解问题
- 一元二次不等式的应用
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
若对于任意的x>0,不等式mx≤x2+2x+4恒成立,则实数m的取值范围为( )
A.(﹣∞,4] | B.(﹣∞,6] | C.[﹣2,6] | D.[6,+∞) |
定义在R上的函数f(x)=ax2+x.
(Ⅰ)当a>0时,求证:对任意的x1,x2∈R都有
[f(x1)+f(x2)]
成立;
(Ⅱ)当x∈[0,2]时,|f(x)|≤1恒成立,求实数a的取值范围;
(Ⅲ)若a=
,点p(m,n2)(m∈Z,n∈Z)是函数y=f(x)图象上的点,求m,n.
(Ⅰ)当a>0时,求证:对任意的x1,x2∈R都有


(Ⅱ)当x∈[0,2]时,|f(x)|≤1恒成立,求实数a的取值范围;
(Ⅲ)若a=
