- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 由已知条件判断所给不等式是否正确
- 由不等式的性质比较数(式)大小
- 作差法比较不等式的大小
- 作商法比较不等式的大小
- 由不等式的性质证明不等式
- + 利用不等式求值或取值范围
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
定义区间
,
,
,
的长度均为
,多个区间并集的长度为各区间长度之和,例如,
的长度
. 用
表示不超过
的最大整数,记
,其中
.设
,
,当
时,不等式
解集区间的长度为
,则
的值为

















A.![]() | B.![]() | C.![]() | D.![]() |
已知函数
(其中
为常数).
(1)判断函数
的奇偶性;
(2)若不等式
在
时有解,求实数
的取值范围;
(3)设
,是否存在正数
,使得对于区间
上的任意三个实数
,
,
,都存在以
,
,
为边长的三角形?若存在,试求出这样的
的取值范围;若不存在,请说明理由.


(1)判断函数

(2)若不等式



(3)设










考虑下面两个定义域为(0,+∞)的函数f(x)的集合:
对任何不同的两个正数
,都有
,
=
对任何不同的两个正数
,都有
(1)已知
,若
,且
,求实数
和
的取值范围
(2)已知
,
且
的部分函数值由下表给出:

比较
与4的大小关系
(3)对于定义域为
的函数
,若存在常数
,使得不等式
对任何
都成立,则称
为
的上界,将
中所有存在上界的函数
组成的集合记作
,判断是否存在常数
,使得对任何
和
,都有
,若存在,求出
的最小值,若不存在,说明理由







(1)已知





(2)已知




比较

(3)对于定义域为















已知函数
(
,常数
).
(1)当
时,求不等式
的解集;
(2)根据
的不同取值,判断函数
的奇偶性,并说明理由;
(3)若函数
在
上单调递减,求实数
的取值范围.



(1)当


(2)根据


(3)若函数


