- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- + 求等差数列前n项和
- 等差数列前n项和的基本量计算
- 含绝对值的等差数列前n项和
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
采用系统抽样的方法从400人中抽取20人做问卷调查,为此将他们随机编号为1,2,3…,400.适当分组后在第一组采用随机抽样的方法抽到的号码为5,则抽到的20人中,编号落入区间
内的人员编号之和为( )

A.600 | B.1225 | C.1530 | D.1855 |
“杨辉三角”是我国数学史上的一个伟大成就,是二项式系数在三角形中的一种几何排列.如图所示,第
行的数字之和为______;去除所有为1的项,依此构成数列2,3,3,4,6,4,5,10,10,5,则此数列的前46项和为______.


如图,将数字1,2,3,…,
(
)全部填入一个2行
列的表格中,每格填一个数字,第一行填入的数字依次为
,
,…,
,第二行填入的数字依次为
,
,…,
.记
.

(Ⅰ)当
时,若
,
,
,写出
的所有可能的取值;
(Ⅱ)给定正整数
.试给出
,
,…,
的一组取值,使得无论
,
,…,
填写的顺序如何,
都只有一个取值,并求出此时
的值;
(Ⅲ)求证:对于给定的
以及满足条件的所有填法,
的所有取值的奇偶性相同.












(Ⅰ)当





(Ⅱ)给定正整数









(Ⅲ)求证:对于给定的


已知数对按如下规律排列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第60个数对是_________.
设集合
的元素均为实数,若对任意
,存在
,
,使得
且
,则称元素个数最少的
和
为
的“孪生集”;称
的“孪生集”的“孪生集”为
的“2级孪生集”;称
的“2级孪生集”的“孪生集”为
的“3级孪生集”,依此类推……
(1)设
,直接写出集合
的“孪生集”;
(2)设元素个数为
的集合
的“孪生集”分别为
和
,若使集合
中元素个数最少且所有元素之和为2,证明:
中所有元素之和为
;
(3)若
,请直接写出
的“
级孪生集”的个数,及
所有“
级孪生集”的并集
的元素个数.













(1)设


(2)设元素个数为







(3)若





