- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 平面向量数量积的定义
- 平面向量数量积的运算
- + 数量积的坐标表示
- 数量积的坐标表示
- 向量模的坐标表示
- 坐标计算向量的模
- 向量垂直的坐标表示
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
椭圆
(
)的左右焦点分别为
,
,且离心率为
,点
为椭圆上一动点,
面积的最大值为
.
(1)求椭圆的方程;
(2)设椭圆的左顶点为
,过右焦点
的直线
与椭圆相交于
,
两点,连结
,
并延长交直线
分别于
,
两点,问
是否为定值?若是,求出此定值;若不是,请说明理由.








(1)求椭圆的方程;
(2)设椭圆的左顶点为











已知直线y=﹣x+1与椭圆
1(a>b>0)相交于A、B两点.
(1)若椭圆的离心率为
,焦距为2,求椭圆的标准方程;
(2)若OA⊥OB(其中O为坐标原点),当椭圆的离心率e∈
时,求椭圆的长轴长的最大值.

(1)若椭圆的离心率为

(2)若OA⊥OB(其中O为坐标原点),当椭圆的离心率e∈

已知A,B分别是直线y=x和y=-x上的两个动点,线段AB的长为
,D是AB的中点.
(1)求动点D的轨迹C的方程;
(2)若过点(1,0)的直线l与曲线C交于不同两点P、Q,
①当|PQ|=3时,求直线l的方程;
②设点E(m,0)是x轴上一点,求当
·
恒为定值时E点的坐标及定值.

(1)求动点D的轨迹C的方程;
(2)若过点(1,0)的直线l与曲线C交于不同两点P、Q,
①当|PQ|=3时,求直线l的方程;
②设点E(m,0)是x轴上一点,求当

