- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 平面向量数量积的定义
- + 平面向量数量积的运算
- 用定义求向量的数量积
- 数量积的运算律
- 已知数量积求模
- 向量夹角的计算
- 垂直关系的向量表示
- 数量积的坐标表示
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
根据记载,最早发现勾股定理的人应是我国西周时期的数学家商高,商高曾经和周公讨论过“勾3股4弦5”的问题.现有
满足“勾3股4弦5”,其中“股”
,
为“弦”
上一点(不含端点),且
满足勾股定理,则
______.






已知点
为双曲线
的左、右焦点,过
作垂直于
轴的直线,在
轴的上方交双曲线C于点M,且
(1)求双曲线C的方程;
(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为
求
的值.






(1)求双曲线C的方程;
(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为

