- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 正弦定理和余弦定理
- + 解三角形的实际应用
- 正、余弦定理在几何中的应用
- 正、余弦定理的实际应用
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,一船由西向东航行,在A处测得某岛M的方位角为α,前进5km后到达B处,测得岛M的方位角为β.已知该岛周围3km内有暗礁,现该船继续东行.
(1)若α=2β=60°,问该船有无触礁危险?
(2)当α与β满足什么条件时,该船没有触礁的危险?

(1)若α=2β=60°,问该船有无触礁危险?
(2)当α与β满足什么条件时,该船没有触礁的危险?

如图,A、C两岛之间有一片暗礁,一艘小船于某日上午8时从A岛出发,以
10海里/小时的速度,沿北偏东75°方向直线航行,下午1时到达B处.然后以同样的速度,
沿北偏东15°方向直线航行,下午4时到达C岛.
(Ⅰ)求A、C两岛之间的直线距离;
(Ⅱ)求∠BAC的正弦值.
10海里/小时的速度,沿北偏东75°方向直线航行,下午1时到达B处.然后以同样的速度,
沿北偏东15°方向直线航行,下午4时到达C岛.
(Ⅰ)求A、C两岛之间的直线距离;
(Ⅱ)求∠BAC的正弦值.

甲船在A处、乙船在甲船正南方向距甲船20海里的B处,乙船以每小时10海里的速度向正北方向行驶,而甲船同时以每小时8海里的速度由A处向南偏西60o方向行驶,问经过多少小时后,甲、乙两船相距最近?

如图,两条公路AP与AQ夹角A为钝角,其正弦值是
.甲乙两人从A点出发沿着两条公路进行搜救工作,甲沿着公路AP方向,乙沿着公路AQ方向.

(1)当甲前进5km的时候到达P处,同时
乙到达Q处,通讯测得甲乙两人相距
k
m,求乙在此时前进的距离AQ;
(2)甲在5公里处原地未动,乙回头往A方向行走至M点收到甲发出的信号,此时M点看P、Q两点的张角为
(张角为
QMP)
,求甲乙两人相距的距离MP的长.



(1)当甲前进5km的时候到达P处,同时




(2)甲在5公里处原地未动,乙回头往A方向行走至M点收到甲发出的信号,此时M点看P、Q两点的张角为



设△ABC的内角A,B,C所对的边长分别为a,b,c,且cos B=
,b=2.
(1)当A=30°时,求a的值;
(2)当△ABC的面积为3时,求ac的值.

(1)当A=30°时,求a的值;
(2)当△ABC的面积为3时,求ac的值.
在△ABC中,a.b.c分别为内角A.B.C所对的边,且满足
(1)求角A的大小
(2)现给出三个条件:①a=2.②B=45°③C=
试从中选出两个可以确定△ABC的条件写出你的
选择,并以此为依据求△ABC的面积(只需写出一个选定方案即可,选多种方案以第一种方案记
分)

(1)求角A的大小
(2)现给出三个条件:①a=2.②B=45°③C=

选择,并以此为依据求△ABC的面积(只需写出一个选定方案即可,选多种方案以第一种方案记
分)