- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 正弦定理和余弦定理
- + 解三角形的实际应用
- 正、余弦定理在几何中的应用
- 正、余弦定理的实际应用
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某港口O要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口O北偏西30°且与该港口相距20海里的A处,并正以30海里/时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v海里/时的航行速度匀速行驶,经过t小时与轮船相遇.

(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?
(2)假设小艇的最高航行速度只能达到30海里/时,试设计航行方案(即确定航行方向和航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由.

(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?
(2)假设小艇的最高航行速度只能达到30海里/时,试设计航行方案(即确定航行方向和航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由.
如图所示,某炮兵阵地位于地面A处,两观察所分别位于地面C处和D处,已知CD=6000m,∠ACD=45°,∠ADC=75°,目标出现于地面B处时测得∠BCD=30°,∠BDC=15°,则炮兵阵地到目标的距离是________ m.(结果保留根号).

在
中,角A,B,C所对的边分别为
,b,c,若直线
,
平行,则
一定是( )





A.锐角三角形 | B.等腰三角形 |
C.直角三角形 | D.等腰或者直角三角形 |
一船以24 km/h的速度向正北方向航行,在点A处望见灯塔S在船的北偏东30°方向上,15 min后到点B处望见灯塔在船的北偏东65°方向上,则船在点B时与灯塔S的距离是_____________ km.(精确到
km,
)


在△
中,
,
,
,下列说法中正确的是( )




A.用![]() ![]() ![]() |
B.用![]() ![]() ![]() |
C.用![]() ![]() ![]() |
D.用![]() ![]() ![]() |
如图,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个测量点C与D,测得∠BCD=15°,∠BDC=30°,CD=30,并在点C测得塔顶A的仰角为60°,则塔高AB=


A.![]() | B.![]() |
C.![]() | D.![]() |
如图,有一建筑物
,为了测量它的高度,在地面上选一长度为
的基线
,若在点
处测得
点的仰角为
,在
点处的仰角为
,且
,则建筑物的高度为( )











A.![]() | B.![]() | C.![]() | D.![]() |