- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 正弦定理和余弦定理
- + 解三角形的实际应用
- 正、余弦定理在几何中的应用
- 正、余弦定理的实际应用
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某海域的东西方向上分别有A,B两个观测点(如图),它们相距
海里.现有一艘轮船在D点发出求救信号,经探测得知D点位于A点北偏东45°,B点北偏西60°,这时,位于B点南偏西60°且与B点相距
海里的C点有一救援船,其航行速度为30海里/小时.

(1)求B点到D点的距离BD;
(2)若命令C处的救援船立即前往D点营救,求该救援船到达D点需要的时间.



(1)求B点到D点的距离BD;
(2)若命令C处的救援船立即前往D点营救,求该救援船到达D点需要的时间.
如图,A,B两点相距2千米,
.甲从A点以v千米/小时的速度沿AC方向匀速直线行驶,同一时刻乙出发,经过
小时与甲相遇.

(1)若v = 12千米/小时,乙从B处出发匀速直线追赶,为保证在15分钟内(含15分钟)能与甲相遇,试求乙速度的最小值;
(2)若乙先从A处沿射线AB方向以
千米/小时匀速行进
(
<
<
)小时后,再以8千米/小时的速度追赶甲,试求甲在能与乙相遇的条件下v的最大值.



(1)若v = 12千米/小时,乙从B处出发匀速直线追赶,为保证在15分钟内(含15分钟)能与甲相遇,试求乙速度的最小值;
(2)若乙先从A处沿射线AB方向以





如图,已知两条公路
的交汇点
处有一学校,现拟在两条公路之间的区域内建一工厂
,在两公路旁
(异于点
)处设两个销售点,且满足
,
(千米),
(千米),设
.

(1)试用
表示
,并写出
的范围;
(2)当
为多大时,工厂产生的噪声对学校的影响最小(即工厂与学校的距离最远).(注:
)










(1)试用



(2)当


如图所示,某公路AB一侧有一块空地△OAB,其中OA=3km,OB=3
km,∠AOB=90°.当地政府拟在中间开挖一个人工湖△OMN,其中M,N都在边AB上(M,N不与A,B重合,M在A,N之间),且∠MON=30°.

(1)若M在距离A点2km处,求点M,N之间的距离;
(2)为节省投入资金,人工湖△OMN的面积要尽可能小.试确定M的位置,使△OMN的面积最小,并求出最小面积.


(1)若M在距离A点2km处,求点M,N之间的距离;
(2)为节省投入资金,人工湖△OMN的面积要尽可能小.试确定M的位置,使△OMN的面积最小,并求出最小面积.
一船以每小时
km的速度向东行驶,船在
处看到一灯塔
在北偏东
,行驶4小时后,船到达
处,看到这个灯塔在北偏东
,这时船与灯塔的距离为( )






A.60km | B.![]() | C.![]() | D.30km |