- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 正弦定理
- 三角形面积公式
- + 余弦定理
- 余弦定理及辨析
- 余弦定理解三角形
- 余弦定理边角互化的应用
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,CM,CN为某公园景观湖胖的两条木栈道,∠MCN=120°,现拟在两条木栈道的A,B处设置观景台,记BC=a,AC=b,AB=c(单位:百米)

(1)若a,b,c成等差数列,且公差为4,求b的值;
(2)已知AB=12,记∠ABC=θ,试用θ表示观景路线A-C-B的长,并求观景路线A-C-B长的最大值.

(1)若a,b,c成等差数列,且公差为4,求b的值;
(2)已知AB=12,记∠ABC=θ,试用θ表示观景路线A-C-B的长,并求观景路线A-C-B长的最大值.
如图,在棱长为
的正方体
中,
,
,
分别是棱
、
和
所在直线上的动点:

(1)求
的取值范围:
(2)若
为面
内的一点,且
,
,求
的余弦值:
(3)若
、
分别是所在正方形棱的中点,试问在棱
上能否找到一点
,使
平面
?若能,试确定点
的位置,若不能,请说明理由.









(1)求

(2)若





(3)若






