- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 三角函数
- 三角恒等变换
- + 解三角形
- 正弦定理和余弦定理
- 解三角形的实际应用
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
我国南宋著名数学家秦九韶(约1202—1261)被国外科学史家赞誉为“他那个民族,那个时代,并且确实也是所有时代最伟大的数学家之一”.他独立推出了“三斜求积”公式,求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减上,余四约之,为实.一为从隅,开平方得积.”把以上这段文字写成从三条边长求三角形面积的公式,就是
.现如图,已知平面四边形
中,
,
,
,
,
,则平面四边形
的面积是_________.









某农场有一块等腰直角三角形的空地
,其中斜边
的长度为400米.为迎接“五一”观光游,欲在边界
上选择一点
,修建观赏小径
,
,其中
,
分别在边界
,
上,小径
,
与边界
的夹角都为
.区域
和区域
内种植郁金香,区域
内种植月季花.

(1)探究:观赏小径
与
的长度之和是否为定值?请说明理由;
(2)为深度体验观赏,准备在月季花区域内修建小径
,当
点在何处时,三条小径
的长度和最小?
(3)求郁金香区域面积和的最小值.


















(1)探究:观赏小径


(2)为深度体验观赏,准备在月季花区域内修建小径



(3)求郁金香区域面积和的最小值.
某居民小区拟将一块三角形空地改造成绿地.经测量,这块三角形空地的两边长分别为32m和68m,它们的夹角是
.已知改造费用为50元/m2,那么,这块三角形空地的改造费用为( )

A.![]() | B.![]() | C.![]() | D.![]() |
《数书九章》是中国南宋时期杰出数学家秦九韶的著作,全书十八卷共八十一个问题,分为九类,每类九个问题,《数书九章》中记录了秦九昭的许多创造性成就,其中在卷五“三斜求积”中提出了已知三角形三边
,
,
求面积的公式,这与古希腊的海伦公式完成等价,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减上,余四约之,为实,一为从隅,开平方得积.”若把以上这段文字写成公式,即
.现有
满足
,且
的面积
,请运用上述公式判断下列命题正确的是








A.![]() ![]() |
B.![]() ![]() ![]() ![]() |
C.![]() ![]() |
D.![]() ![]() ![]() |
在海岸A处,发现北偏东
方向,距离A为
海里的B处有一艘走私船,在A处北偏西
方向,距离A为2海里的C处有我方一艘辑私艇奉命以
海里/小时的速度追截走私船,B在C的正东方向,此时走私船正以10海里/小时的速度从B处向北偏东
方向逃窜,问辑私艇沿( )方向追击,才能最快追上走私船.





A.北偏东30° | B.北偏东45° |
C.北偏东60° | D.北偏东75° |
若点A在点C的北偏东60°方向上,点B在点C的南偏东30°方向上,且AC=BC,则点A在点B的( )
A.北偏东![]() | B.北偏西![]() |
C.北偏东![]() | D.北偏西![]() |
学校里有一棵树,甲同学在
地测得树尖
的仰角为
,乙同学在
地测得树尖
的仰角为
,量得
,树根部为
(
在同一水平面上),则
______________.









