- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 任意角和弧度制
- 任意角的三角函数
- 同角三角函数的基本关系
- 三角函数的诱导公式
- 三角函数的图象与性质
- + 函数y=Asin(ωx+φ)的图象变换
- 四种基本图象变换
- 三角函数的图象变换
- 三角函数的应用
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设函数
(I)对
的图像作如下变换:先将
的图像向右平移
个单位,再将横坐标伸长到原来的2倍,纵坐标不变,得到函数
的图像,求
的解析式;
(II)已知
,且
,求
的值.

(I)对





(II)已知



已知函数
.
(1)若把
图象上各点的横坐标伸长到原来的2倍,纵坐标不变,再把所得图象向右平移
,得到函数
的图象,写出
的函数解析式;
(2)若
且
与
共线,求
的值.

(1)若把




(2)若




如图,
是以原点为圆心的单位圆上的两个动点,若它们同时从点
出发,沿逆时针方向作匀角速度运动,其角速度分别为
(单位:弧度/秒),
为线段
的中点,记经过
秒后(其中
),
(I)求
的函数解析式;
(II)将
图象上的各点均向右平移2个单位长度,得到
的图象,求函数
的单调递减区间.








(I)求

(II)将




把函数
的图象上所有的点向左平移
个单位长度,再把所得图象上所有点的横坐标变为原来的2倍(纵坐标不变),得到图象的函数表达式为()


A.![]() |
B.![]() |
C.![]() |
D.![]() |