- 集合与常用逻辑用语
- 函数与导数
- 导数的概念和几何意义
- 导数的计算
- + 导数在研究函数中的作用
- 利用导数研究函数的单调性
- 利用导数研究函数的极值
- 利用导数研究函数的最值
- 导数的综合应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知a为实数,函数f(x)=aln x+x2-4x.
(1)是否存在实数a,使得f(x)在x=1处取得极值?证明你的结论;
(2)设g(x)=(a-2)x,若∃x0∈
,使得f(x0)≤g(x0)成立,求实数a的取值范围.
(1)是否存在实数a,使得f(x)在x=1处取得极值?证明你的结论;
(2)设g(x)=(a-2)x,若∃x0∈

设函数
,
(其中
为自然对数的底数).
(1)分别求函数
和
的极值点;
(2)设函数
,若
有三个极值点,
①求实数
的取值范围;
②求证:函数
的两个极小值相等.



(1)分别求函数


(2)设函数


①求实数

②求证:函数
