- 集合与常用逻辑用语
- 函数与导数
- 利用二次函数模型解决实际问题
- + 分段函数模型的应用
- 分式型函数模型的应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
国家规定个人稿费纳税办法为:不超过800元的不纳税;超过800元而不超过4000元的按超过800元的14%纳税;超过4000元的按全稿酬的11%纳税.某人出版了一书共纳税420元,这个人的稿费为____元.
近年来,来自“一带一路”沿线的20国青年评选出了中国的“新四大发明”:高铁、扫码支付、共享单车和网购.其中共享单车既响应绿色出行号召,节能减排,保护环境,又方便人们短距离出行,增强灵活性.某城市试投放3个品牌的共享单车分别为红车、黄车、蓝车,三种车的计费标准均为每15分钟(不足15分钟按15分钟计)1元,按每日累计时长结算费用,例如某人某日共使用了24分钟,系统计时为30分钟.A同学统计了他1个月(按30天计)每天使用共享单车的时长如茎叶图所示,不考虑每月自然因素和社会因素的影响,用频率近似代替概率.设A同学每天消费
元.

(1)求
的分布列及数学期望;
(2)各品牌为推广用户使用,推出APP注册会员的优惠活动:红车月功能使用费8元,每天消费打5折;黄车月功能使用费20元,每天前15分钟免费,之后消费打8折;蓝车月功能使用费45元,每月使用22小时之内免费,超出部分按每15分钟1元计费.设
分别为红车,黄车,蓝车的月消费,写出
与
的函数关系式,参考(1)的结果,A同学下个月选择其中一个注册会员,他选哪个费用最低?
(3)该城市计划3个品牌的共享单车共3000辆正式投入使用,为节约居民开支,随机调查了100名用户一周的平均使用时长如下表:
在(2)的活动条件下,每个品牌各应该投放多少辆?


(1)求

(2)各品牌为推广用户使用,推出APP注册会员的优惠活动:红车月功能使用费8元,每天消费打5折;黄车月功能使用费20元,每天前15分钟免费,之后消费打8折;蓝车月功能使用费45元,每月使用22小时之内免费,超出部分按每15分钟1元计费.设



(3)该城市计划3个品牌的共享单车共3000辆正式投入使用,为节约居民开支,随机调查了100名用户一周的平均使用时长如下表:
时长 | (0,15] | (15,30] | (30,45] | (45,60] |
人数 | 16 | 45 | 34 | 5 |
在(2)的活动条件下,每个品牌各应该投放多少辆?
已知某零件在
周内周销售价格
(元)与时间
(周)
的函数关系近似如图所示(图象由两条线段组成),且周销售量
近似满足函数
(件).

(1)根据图象求该零件在
周内周销售价格
(元)与时间
(周)的函数关系式
;
(2)试问这
周内哪周的周销售额最大?并求出最大值.
(注:周销售额=周销售价格
周销售量)







(1)根据图象求该零件在




(2)试问这

(注:周销售额=周销售价格

学校某研究性学习小组在对学生上课注意力集中情况的调查研究中,发现其在40分钟的一节课中,注意力指数
与听课时间
(单位:分钟)之间的关系满足如图所示的图象,当
时,图象是二次函数图象的一部分,其中顶点
,过点
;当
时,图象是线段
,其中
.根据专家研究,当注意力指数大于62时,学习效果最佳.

(Ⅰ)试求
的函数关系式;
(Ⅱ)教师在什么时段内安排内核心内容,能使得学生学习效果最佳?请说明理由.









(Ⅰ)试求

(Ⅱ)教师在什么时段内安排内核心内容,能使得学生学习效果最佳?请说明理由.
某商场在促销期间规定:商场内所有商品按标价的
出售,当顾客在商场内消费一定金额后,按如下方案获得相应金额的奖券:
根据上述促销方法,顾客在该商场购物可以获得双重优惠,例如:购买标价为400元的商品,则消费金额为320元,获得的优惠额为:
元,设购买商品得到的优惠率=(购买商品获得的优惠额)/(商品标价),试问:
(1)若购买一件标价为1000元的商品,顾客得到的优惠率是多少?
(2)对于标价在
(元)内的商品,顾客购买标价为多少元的商品,可得到不小于
的优惠率?

消费金额(元)的范围 | ![]() | ![]() | ![]() | ![]() | … |
获得奖券的金额(元) | 30 | 60 | 100 | 130 | … |
根据上述促销方法,顾客在该商场购物可以获得双重优惠,例如:购买标价为400元的商品,则消费金额为320元,获得的优惠额为:

(1)若购买一件标价为1000元的商品,顾客得到的优惠率是多少?
(2)对于标价在


根据统计,一名工人组装第x件某产品所用的时间(单位:分钟)为f(x)=
(A,c为常数).已知工人组装第4件产品用时30分钟,组装第A件产品用时15分钟,那么c和A的值分别是( )

A.75,25 | B.75,16 | C.60,25 | D.60,16 |
某商品在近30天内每件的销售价格
元
与时间
天
的函数关系是
,该商品的日销售量
件
与时间
天
的函数关系是
,
(1)写出该种商品的日销售额
元
与时间
天
的函数关系;
(2)求日销售额
的最大值.










(1)写出该种商品的日销售额




(2)求日销售额

为了配合今年上海迪斯尼乐园工作,某单位设计了统计人数的数学模型
,以
表示第
个时刻进入园区的人数;以
表示第
个时刻离开园区的人数.设定以15分钟为一个计算单位,上午9点15分作为第1个计算人数单位,即
;9点30分作为第2个计算单位,即
;依次类推,把一天内从上午9点到晚上8点15分分成45个计算单位(最后结果四舍五入,精确到整数).
(1)试计算当天14点至15点这1小时内进入园区的游客人数
、离开园区的游客人数
各为多少?
(2)从13点45分(即
)开始,有游客离开园区,请你求出这之后的园区内游客总人数最多的时刻,并说明理由.







(1)试计算当天14点至15点这1小时内进入园区的游客人数



(2)从13点45分(即

网络游戏要实现可持续发展,必须要发展绿色网游.为此,国家文化部将从内容上对网游作出强制规定,国家信息产业部还将从技术上加强对网游的强制限制,开发限制网瘾的疲劳系统,现已开发的“游戏防沉迷系统”规则如下:
①
小时以内(含
小时)为健康时间,玩家在这段时间内获得的累积经验值
(单位:
)与游戏时间
(小时)满足关系式:
(
为常数);
②
小时到
小时(含
小时)为疲劳时间,玩家在这段时间内获得的经验值为
(即累积经验值不变);
③超过
小时为不健康时间,累积经验值开始损失,损失的经验值与不健康时间成正比例关系,比例系数为
.
(1)当
时,写出累积经验值
与游戏时间
的函数关系式
,并求出游戏
小时的累积经验值;
(2)定义“玩家愉悦指数”为累积经验值
与游戏时间
的比值,记作
;若
,开发部门希望在健康时间内,这款游戏的“玩家愉悦指数”不低于
,求实数
的取值范围.
①







②




③超过


(1)当





(2)定义“玩家愉悦指数”为累积经验值






甲、乙两家销售公司拟各招聘一名产品推销员,日工资方案如下: 甲公司规定底薪80元,每销售一件产品提成1元; 乙公司规定底薪120元,日销售量不超过45件没有提成,超过45件的部分每件提成8元.

(1)请将两家公司各一名推销员的日工资
(单位: 元) 分别表示为日销售件数
的函数关系式;
(2)从两家公司各随机选取一名推销员,对他们过去100天的销售情况进行统计,得到如下条形图.若将该频率视为概率,分别求甲、乙两家公司一名推销员的日工资超过125元的概率.

(1)请将两家公司各一名推销员的日工资


(2)从两家公司各随机选取一名推销员,对他们过去100天的销售情况进行统计,得到如下条形图.若将该频率视为概率,分别求甲、乙两家公司一名推销员的日工资超过125元的概率.