刷题首页
题库
高中数学
题干
甲、乙两家销售公司拟各招聘一名产品推销员,日工资方案如下: 甲公司规定底薪80元,每销售一件产品提成1元; 乙公司规定底薪120元,日销售量不超过45件没有提成,超过45件的部分每件提成8元.
(1)请将两家公司各一名推销员的日工资
(单位: 元) 分别表示为日销售件数
的函数关系式;
(2)从两家公司各随机选取一名推销员,对他们过去100天的销售情况进行统计,得到如下条形图.若将该频率视为概率,分别求甲、乙两家公司一名推销员的日工资超过125元的概率.
上一题
下一题
0.99难度 解答题 更新时间:2020-01-23 11:14:43
答案(点此获取答案解析)
同类题1
某汽配厂生产某种零件,每个零件的出厂单价为60元,为了鼓励更多销售商订购,该厂决定当一次订购超过100个时,每多订购一个,订购的全部零件的出厂单价就降低
元,但实际出厂单价不低于51元.
当一次订购量最少为多少时,零件的实际出厂单价恰好为51元?
设一次订购量为x个,零件的实际出厂单价为p元,写出函数
的表达式.
同类题2
季节性服装当季节即将来临时,价格呈上升趋势,设某服装开始时定价为10元,并且每周涨价2元,5周后开始保持20元的价格平稳销售;10周后当季节即将过去时,平均每周削价2元,直到16周末,该服装已不再销售.
(1)试建立价格
P
与周次
t
之间的函数关系式.
(2)若此服装每件进价
Q
与周次
t
之间的关系为
Q
=﹣0.125(
t
﹣8)
2
+12,
t
∈0,16,
t
∈N
*
,试问该服装第几周每件销售利润
L
最大?(注:每件销售利润=售价﹣进价)
同类题3
某乡镇为了进行美丽乡村建设,规划在长为10千米的河流
的一侧建一条观光带,观光带的前一部分为曲线段
,设曲线段
为函数
,
(单位:千米)的图象,且曲线段的顶点为
;观光带的后一部分为线段
,如图所示.
(1)求曲线段
对应的函数
的解析式;
(2)若计划在河流
和观光带
之间新建一个如图所示的矩形绿化带
,绿化带由线段
构成,其中点
在线段
上.当
长为多少时,绿化带的总长度最长?
同类题4
为了研究某种药物,用小白鼠进行试验,发现药物在血液内的浓度与时间的关系因使用方式的不同而不同.若使用注射方式给药,则在注射后的3小时内,药物在白鼠血液内的浓度
与时间t满足关系式:
,若使用口服方式给药,则药物在白鼠血液内的浓度
与时间t满足关系式:
现对小白鼠同时进行注射和口服该种药物,且注射药物和口服药物的吸收与代谢互不干扰.
(1)若a=1,求3小时内,该小白鼠何时血液中药物的浓度最高,并求出最大值?
(2)若使小白鼠在用药后3小时内血液中的药物浓度不低于4,求正数a的取值范围.
同类题5
在某服装商场,当某一季节即将来临时,季节性服装的价格呈现上升趋势.设一种服装原定价为每件70元,并且每周(7天)每件涨价6元,5周后开始保持每件100元的价格平稳销售;10周后,当季节即将过去时,平均每周每件降价6元,直到16周末,该服装不再销售.
(1)试建立每件的销售价格
(单位:元)与周次
之间的函数解析式;
(2)若此服装每件每周进价
(单位:元)与周次
之间的关系为
,
,试问该服装第几周的每件销售利润最大?(每件销售利润=每件销售价格-每件进价)
相关知识点
函数与导数
函数的应用
函数模型及其应用
常见的函数模型(1)——二次、分段函数
分段函数模型的应用
根据条形统计图解决实际问题