- 集合与常用逻辑用语
- 函数与导数
- 指数、对数、幂函数模型的增长差异
- + 根据实际问题增长率选择合适的函数模型
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图所示,在一张边长为20cm的正方形铁皮的4个角上,各剪去一个边长是xcm的小正方形,折成一个容积是y
的无盖长方体铁盒,试写出用x表示y的函数关系式,并指出它的定义域.


据悉遵义市红花岗区、汇川区2017年现有人口总数为110万人,如果年自然增长率为
%,试解答以下问题:
(1)写出经过
年后,遵义市人口总数
(单位:万人)关于
的函数关系式;
(2)计算10年以后遵义市人口总数(精确到0.1万人);
(3)计算经过多少年后遵义市人口将达到150万人(精确到1年)
(参考数据:

(1)写出经过



(2)计算10年以后遵义市人口总数(精确到0.1万人);
(3)计算经过多少年后遵义市人口将达到150万人(精确到1年)
(参考数据:

某电脑公司2015年的各项经营收入中,经营电脑配件的收入为400万元,占全年经营总收入的40%.该公司预计2017年经营总收入要达到1 690万元,且计划从2015年到2017年,每年经营总收入的年增长率相同,2016年预计经营总收入为________万元.
某公司拟投资100万元,有两种投资方案可供选择:一种是年利率为10%,按单利计算,5年后收回本金和利息;另一种是年利率为9%,按每年复利一次计算,5年后收回本金和利息.哪一种投资更有利?这种投资比另一种投资5年可多得利息多少元?(结果精确到0.01万元)
每年的3月12日是植树节,全国各地在这一天都会开展各种形式的植树活动,某市现有树木面积10万平方米,计划今后5年内扩大树木面积,现有两种方案如下:
方案一:每年植树1万平方米;
方案二:每年树木面积比上一年增加9%.
哪个方案较好?
方案一:每年植树1万平方米;
方案二:每年树木面积比上一年增加9%.
哪个方案较好?
复利是把前一期的利息和本金加在一起作本金,再计算下一期利息的一种计算利息的方法.某人向银行贷款10万元,约定按年利率7%复利计算利息.
(1)写出x年后,需要还款总数y(单位:万元)和x(单位:年)之间的函数关系式;
(2)计算5年后的还款总额(精确到元);
(3)如果该人从贷款的第二年起,每年向银行还款x元,分5次还清,求每次还款的金额x(精确到元).
(参考数据:1.073=1.225 0,1.074=1.310 8,1.075=1.402 551,1.076=1.500 730)
(1)写出x年后,需要还款总数y(单位:万元)和x(单位:年)之间的函数关系式;
(2)计算5年后的还款总额(精确到元);
(3)如果该人从贷款的第二年起,每年向银行还款x元,分5次还清,求每次还款的金额x(精确到元).
(参考数据:1.073=1.225 0,1.074=1.310 8,1.075=1.402 551,1.076=1.500 730)
在某种新型材料的研制中,实验人员获得了下面一组实验数据(见下表):现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是( )
x | 1.99 | 3 | 4 | 5.1 | 6.12 |
y | 1.5 | 4.04 | 7.5 | 12 | 18.01 |
A.y=2x-2 | B.y=![]() |
C.y=log2x | D.y=![]() |
某学校开展研究性学习活动,一组同学获得了下面的一组试验数据:
现有如下5个模拟函数:
①y=0.58x-0.16;②y=2x-3.02;③y=x2-5.5x+8;④y=log2x;⑤y=
+1.74
请从中选择一个模拟函数,使它能近似地反映这些数据的规律,应选________ (填序号).
x | 1.99 | 3 | 4 | 5.1 | 8 |
y | 0.99 | 1.58 | 2.01 | 2.35 | 3.00 |
现有如下5个模拟函数:
①y=0.58x-0.16;②y=2x-3.02;③y=x2-5.5x+8;④y=log2x;⑤y=


请从中选择一个模拟函数,使它能近似地反映这些数据的规律,应选