2019年春节期间,由于人们燃放烟花爆竹,致使一城镇空气出现污染,须喷洒一定量的去污剂进行处理.据测算,每喷洒1千克的去污剂,空气中释放的浓度(单位:毫克/立方米)随着时间(单位:天)变化的函数关系式近似为,若多次喷洒,则某一时刻空气中的去污剂浓度为每次投放的去污剂在相应时刻所释放的浓度之和.经测试,当空气中去污剂的浓度不低于4(毫克/立方米)时,它才能起到去污作用.
(Ⅰ)若一次喷洒4千克的去污剂,则去污时间可达几天?
(Ⅱ)若第一次喷洒2千克的去污剂,6天后再喷洒千克的去污剂,要使接下来的4天中能够持续有效去污,试求的最小值.
当前题号:1 | 题型:解答题 | 难度:0.99
某市准备建一个如图所示的综合性休闲广场.已知矩形广场的总面积为2000平方米,其中阴影部分为通道,通道的宽为1米,中间的两个小矩形完全相同.

(1)用矩形的宽(米)表示中间的三个矩形的总面积(平方米)的函数关系式,并给出定义域;
(2)当矩形的宽为何值时,取得最大值,并求出最大值.
当前题号:2 | 题型:解答题 | 难度:0.99
某家用轿车的购车费9.5万元,保险费、保养费及换部分零件的费用合计每年平均4000元,每年行车里程按1万公里,前5年性能稳定,每年的油费5000元,由于磨损,从第6年开始,每年的油费以500元的速度增加,按这种标准,这种车开多少年报废比较合算?
当前题号:3 | 题型:解答题 | 难度:0.99
如图,甲、乙两个企业的用电负荷量关于投产持续时间(单位:小时)的关系均近似地满足函数

(1)根据图象,求函数的解析式;
(2)为使任意时刻两企业用电负荷量之和不超过,现采用错峰用电的方式,让企业乙比企业甲推迟小时投产,求的最小值.
当前题号:4 | 题型:解答题 | 难度:0.99
如图,在直角坐标系中,曲线段是函数图象的一部分,为曲线段上异于点一个动点,轴,垂足为轴,垂足为.

(1)求长度的范围;
(2)求矩形面积的最大值.
当前题号:5 | 题型:解答题 | 难度:0.99
近年来,网上购物已经成为人们消费的一种习惯.假设某淘宝店的一种装饰品每月的销售量 (单位:千件)与销售价格 (单位:元/件)之间满足如下的关系式:为常数.已知销售价格为元/件时,每月可售出千件.
(1)求实数的值;
(2)假设该淘宝店员工工资、办公等所有的成本折合为每件2元(只考虑销售出的装饰品件数),试确定销售价格的值,使该店每月销售装饰品所获得的利润最大.(结果保留一位小数)
当前题号:6 | 题型:解答题 | 难度:0.99
中,,且,(其中),且,若分别为线段中点,当线段取最小值时________
当前题号:7 | 题型:填空题 | 难度:0.99
为响应绿色出行,前段时间大连市在推出“共享单车”后,又推出“新能源分时租赁汽车”,其中一款新能源分时租赁汽车,每次租车收费的标准由两部分组成:①根据行驶里程按1元/公里计费;②行驶时间不超过40分钟时,按0.12元/分钟计费:超出部分按0.20元/分钟计费,己知张先生家离上班地点15公里,每天租用该款汽车上、下班各一次.由于堵车、红路灯等因素,每次路上开车花费的时间(分钟)是一个随机变量.现统计了100次路上开车花费时间,在各时间段内的频数分布情况如下表所示:
时间(分钟)
 
 
 
 
频数
4
36
40
20
 
将各时间段发生的频率视为概率,每次路上开车花费的时间视为用车的时间,范围为分钟.
(1)写出张先生一次租车费用(元)与用车时间(分钟)的函数关系式:
(2)若公司每月给900元的车补,请估计张先生每月(按24天计算)的车补是否足够上下班租用新能源分时租赁汽车?并说明理由.(同一时段,用该区间的中点值作代表)
当前题号:8 | 题型:解答题 | 难度:0.99
如图,一条小河岸边有相距两个村庄(村庄视为岸边上两点),在小河另一侧有一集镇(集镇视为点),到岸边的距离,河宽,通过测量可知,的正切值之比为.当地政府为方便村民出行,拟在小河上建一座桥分别为两岸上的点,且垂直河岸,的左侧),建桥要求:两村所有人到集镇所走距离之和最短,已知两村的人口数分别是人、人,假设一年中每人去集镇的次数均为次.设.(小河河岸视为两条平行直线)

(1)记为一年中两村所有人到集镇所走距离之和,试用表示
(2)试确定的余弦值,使得最小,从而符合建桥要求.
当前题号:9 | 题型:解答题 | 难度:0.99