- 集合与常用逻辑用语
- 函数与导数
- 函数与方程
- + 函数模型及其应用
- 几类不同增长的函数模型
- 常见的函数模型(1)——二次、分段函数
- 常见的函数模型(2)——指数、对数、幂函数
- 函数模型的应用实例
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某公司为了实现2013年销售利润1 000万元的目标,准备制定一个激励销售人员的奖励方案:从销售利润达到10万元开始,按销售利润进行奖励,且奖金数额y(单位:万元)随销售利润x(单位:万元)的增加而增加,但奖金数额不超过5万元,同时奖金数额不超过销售利润的25%.现有三个奖励模型:y=0.025x,y=1.003x,y=
ln x+1,问其中是否有模型能完全符合公司的要求?请说明理由.
(参考数据:
,
,
)

(参考数据:



某网民用电脑上因特网有两种方案可选:一是在家里上网,费用分为通讯费(即电话费)与网络维护费两部分.现有政策规定:通讯费为0.02元/分钟,但每月30元封顶(即超过30元则只需交30元),网络维护费1元/小时,但每月上网不超过10小时则要交10元;二是到附近网吧上网,价格为1.5元/小时.
(Ⅰ)将该网民某月内在家上网的费用y(元)表示为时间t(小时)的函数;
(Ⅱ)试确定在何种情况下,该网民在家上网更便宜?
(Ⅰ)将该网民某月内在家上网的费用y(元)表示为时间t(小时)的函数;
(Ⅱ)试确定在何种情况下,该网民在家上网更便宜?
中心城区现有绿化面积为1 000 hm2,计划每年增长4%,经过x(x∈N+)年,绿化面积为y hm2,则x,y间的函数关系为( )
A.y=1 000(1+4%)x(x∈N+) |
B.y=(1 000×4%)x(x∈N+) |
C.y=1 000(1-4%)x(x∈N+) |
D.y=1 000(4%)x(x∈N+) |
某森林出现火灾,火势正以每分钟100m2的速度顺风蔓延,消防站接到警报立即派消防员前去,在火灾发生后5分钟到达救火现场.已知消防队员在现场平均每人每分钟可灭火50m2,所消耗的灭火材料、劳务津贴等费用为每人每分钟125元,另附加每次救火所耗损的车辆、器械和装备等费用平均每人100元,而烧毁1m2森林损失费为60元.则应该派多少名消防队员前去救火,才能使总损失最少?并求最少损失费.
世界人口在过去40年翻了一番,则每年人口平均增长率约是(参考数lg2≈0.3010,100.0075≈1.017)( )
A.1.5% | B.1.6% | C.1.7% | D.1.8% |
行驶中的汽车在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫做刹车距离.在某种路面上,某种型号汽车的刹车距离y(米)与汽车的车速x(千米/时)满足下列关系:y=
+mx+n(m,n是常数).如图是根据多次实验数据绘制的刹车距离y(米)与汽车的车速x(千米/时)的关系图.
(1)求出y关于x的函数表达式;
(2)如果要求刹车距离不超过25.2米,求行驶的最大速度.

(1)求出y关于x的函数表达式;
(2)如果要求刹车距离不超过25.2米,求行驶的最大速度.

某公司为了实现2013年销售利润1 000万元的目标,准备制定一个激励销售人员的奖励方案:从销售利润达到10万元开始,按销售利润进行奖励,且奖金数额y(单位:万元)随销售利润x(单位:万元)的增加而增加,但奖金数额不超过5万元,同时奖金数额不超过销售利润的25%.现有三个奖励模型:y=0.025x,y=1.003x,y=
ln x+1,问其中是否有模型能完全符合公司的要求?请说明理由.
(参考数据:
,
,
)

(参考数据:



某厂有容量300吨的水塔一个,每天从早六点到晚十点供应生活和生产用水,已知:该厂生活用水每小时10吨,工业用水总量
(吨)与时间
(单位:小时,规定早晨六点时
)的函数关系为
,水塔的进水量有10级,第一级每小时进水10吨,以后每提高一级,进水量增加10吨.若某天水塔原有水100吨,在供应同时打开进水管.问该天进水量应选择几级,既能保证该厂用水(即水塔中水不空),又不会使水溢出?




某企业为节能减排,用
万元购进一台新设备用于生产.第一年需运营费用
万元,从第二年起,每年运营费用均比上一年增加
万元,该设备每年生产的收入均为
万元.设该设备使用了
年后,年平均盈利额达到最大值(盈利额等于收入减去成本),则
等于( )






A.![]() | B.![]() | C.![]() | D.![]() |