刷题首页
题库
高中数学
题干
某企业为节能减排,用
万元购进一台新设备用于生产.第一年需运营费用
万元,从第二年起,每年运营费用均比上一年增加
万元,该设备每年生产的收入均为
万元.设该设备使用了
年后,年平均盈利额达到最大值(盈利额等于收入减去成本),则
等于( )
A.
B.
C.
D.
上一题
下一题
0.99难度 单选题 更新时间:2018-11-12 02:13:12
答案(点此获取答案解析)
同类题1
为了在夏季降温和冬季取暖时减少能源消耗,业主决定对房屋的屋顶和外墙喷涂某种新型隔热材料,该材料有效使用年限为20年.已知房屋外表喷一层这种隔热材料的费用为每毫米厚6万元,且每年的能源消耗费用
(万元)与隔热层厚度
(毫米)满足关系:
.设
为隔热层建造费用与
年的能源消耗费用之和.
(1)请解释
的实际意义,并求
的表达式;
(2)当隔热层喷涂厚度为多少毫米时,业主所付的总费用
最少?并求此时与不建隔热层相比较,业主可节省多少钱?
同类题2
某厂生产某种电子元件,如果生产出一件正品,可获利200元,如果生产出一件次品,则损失100元,已知该厂在制造电子元件过程中,次品率p与日产量x的函数关系是:
,为获得最大盈利,该厂的日产量应定为()
A.14件
B.16件
C.24件
D.32件
同类题3
近年来大气污染防治工作得到各级部门的重视,某企业现有设备下每日生产总成本
(单位:万元)与日产量
(单位:吨)之间的函数关系式为
,现为了配合环境卫生综合整治,该企业引进了除尘设备,每吨产品除尘费用为
万元,除尘后当日产量
时,总成本
.
(1)求
的值;
(2)若每吨产品出厂价为59万元,试求除尘后日产量为多少时,每吨产品的利润最大,最大利润为多少?
同类题4
在三角形
中,
、
分别是
、
上的点,且
,
的面积为1,设
,
表示
的面积,则
与
的函数关系式为______.
同类题5
某工厂拟建一座平面图(如右图所示)为矩形且面积为200平方米的三级污水处理池,由于地形限制,长、宽都不能超过16米,如果池外周壁建造单价为每米400元,中间两条隔墙建造单价为每米248元,池底建造单价为每平方米80元(池壁厚度忽略不计,且池无盖).
(1)写出总造价y(元)与污水处理池长x(米)的函数关系式,并指出其定义域;
(2)求污水处理池的长和宽各为多少时,污水处理池的总造价最低?并求最低总造价.
相关知识点
函数与导数
函数的应用
函数模型及其应用
常见的函数模型(1)——二次、分段函数
分式型函数模型的应用