- 集合与常用逻辑用语
- 函数与导数
- 指数与指数幂的运算
- 指数函数的概念
- 指数函数的图象
- 指数函数的定义域
- 指数函数的值域
- 指数函数的单调性
- + 指数函数的最值
- 求已知指数型函数的最值
- 根据指数函数的最值求参数
- 含参指数函数的最值
- 指数函数最值与不等式的综合问题
- 指数函数的应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知
的图像关于坐标原点对称.
(1)求
的值;
(2)若函数
在
内存在零点,求实数
的取值范围;
(3)设
,若不等式
在
上恒成立,求满足条件的最小整数
的值.

(1)求

(2)若函数



(3)设




已知定义域为
的函数
在
上有最大值1,设
.
(1)求
的值;
(2)若不等式
在
上恒成立,求实数
的取值范围;
(3)若函数
有三个不同的零点,求实数
的取值范围(
为自然对数的底数).




(1)求

(2)若不等式



(3)若函数



已知函数
,在区间
上有最大值
,最小值
,设函数
.
(1)求
的值;
(2)不等式
在
上恒成立,求实数
的取值范围;
(3)方程
有三个不同的实数解,求实数
的取值范围.





(1)求

(2)不等式



(3)方程


对数函数g(x)=1ogax(a>0,a≠1)和指数函数f(x)=ax(a>0,a≠1)互为反函数.已知函数f(x)=3x,其反函数为y=g(x).
(Ⅰ)若函数g(kx2+2x+1)的定义域为R,求实数k的取值范围;
(Ⅱ)若0<x1<x2且|g(x1)|=|g(x2)|,求4x1+x2的最小值;
(Ⅲ)定义在I上的函数F(x),如果满足:对任意x∈I,总存在常数M>0,都有-M≤F(x)≤M成立,则称函数F(x)是I上的有界函数,其中M为函数F(x)的上界.若函数h(x)=
,当m≠0时,探求函数h(x)在x∈[0,1]上是否存在上界M,若存在,求出M的取值范围,若不存在,请说明理由.
(Ⅰ)若函数g(kx2+2x+1)的定义域为R,求实数k的取值范围;
(Ⅱ)若0<x1<x2且|g(x1)|=|g(x2)|,求4x1+x2的最小值;
(Ⅲ)定义在I上的函数F(x),如果满足:对任意x∈I,总存在常数M>0,都有-M≤F(x)≤M成立,则称函数F(x)是I上的有界函数,其中M为函数F(x)的上界.若函数h(x)=
