- 集合与常用逻辑用语
- 函数与导数
- 函数图像的识别
- 画出具体函数图象
- 根据实际问题作函数图象
- 函数图象的应用
- + 函数图象的变换
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
若f(x)的图象向左平移一个单位后与y=ex的图象关于y轴对称,则f(x)解析式是
A.ex+1 | B.ex–1 |
C.e–x+1 | D.e–x–1 |
对于函数
,若存在区间
,使得
,则称函数
为“可等域函数”.区间
为函数的一个“可等域区间”.给出下列三个函数:
①
;②
;③
;
则其中存在唯一“可等域区间”的“可等域函数”的个数是( )





①



则其中存在唯一“可等域区间”的“可等域函数”的个数是( )
A.0 | B.1 | C.2 | D.3 |
为了得到函数
的图象,只需把函数
的图像上所有的点( )


A.向左平移3个单位长度,再向上平移1个单位长度 |
B.向右平移3个单位长度,再向上平移1个单位长度 |
C.向左平移3个单位长度,再向下平移1个单位长度 |
D.向右平移3个单位长度,再向下平移1个单位长度 |