- 集合与常用逻辑用语
- 函数与导数
- 函数的单调性
- 函数的最值
- 函数的奇偶性
- 函数的周期性
- 函数的对称性
- + 函数的图象
- 函数图像的识别
- 画出具体函数图象
- 根据实际问题作函数图象
- 函数图象的应用
- 函数图象的变换
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
定义在R上的奇函数y=f(x)满足f(3)=0,且当x>0时,不等式f(x)>﹣xf′(x)恒成立,则函数g(x)=xf(x)+lg|x+1|的零点的个数为_______.
给出下列四个命题:
①
中,
是
成立的充要条件;
②当
时,有
;
③已知
是等差数列
的前n项和,若
,则
;
④若函数
为
上的奇函数,则函数
的图象一定关于点
成中心对称.其中所有正确命题的序号为___________.
①



②当


③已知




④若函数




若函数 f(x)与函数 g(x) 的图像有且只有一个交点,则必有( )
A.函数 y=f(x)有且只有一个零点 |
B.函数 y=g(x)有且只有一个零点 |
C.函数 y=f(x)+g(x)有且只有一个零点 |
D.函数 y=f(x)-g(x)有且只有一个零点 |