- 集合与常用逻辑用语
- 函数与导数
- 函数及其表示
- + 函数的基本性质
- 函数的单调性
- 函数的最值
- 函数的奇偶性
- 函数的周期性
- 函数的对称性
- 函数的图象
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
若定义在R上的函数
满足:对于任意实数x、y,总有
恒成立,我们称
为“类余弦型”函数.
已知
为“类余弦型”函数,且
,求
和
的值;
在
的条件下,定义数列
2,3,
求
的值.
若
为“类余弦型”函数,且对于任意非零实数t,总有
,证明:函数
为偶函数,设有理数
,
满足
,判断
和
的大小关系,并证明你的结论.






















若
是
上的奇函数,且
在
上单调递增,则下列结论,①
是偶函数;②对任意的
都有
;③
在
上单调递增;④
在
上单调递增,其中正确结论的个数为( )











A.1 | B.2 | C.3 | D.4 |