- 集合与常用逻辑用语
- 函数与导数
- 函数的定义
- 区间
- 函数的定义域
- 函数的值域
- 函数的解析式
- 相等函数
- + 函数的表示方法
- 解析法表示函数
- 图象法表示函数
- 列表法表示函数
- 分段函数
- 映射
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
若直角坐标平面内的两点P,Q满足条件:①P,Q都在函数y=f(x)的图象上;②P,Q关于原点对称,则称点对(P,Q)是函数y=f(x)的一对“友好点对”(点对(P,Q)与(Q,P)看作同一对“友好点对”).已知函数f(x)=
则此函数的“友好点对”有 ( )

A.3对 | B.2对 | C.1对 | D.0对 |
如图,直线
与反比例函数
的图象交于B、C两点,B(2,m)且m<2,正方形ABCD的顶点A、D在坐标轴上.
⑴ 求
,
的值;
⑵ 直接写出
时,
的取值范围. 


⑴ 求


⑵ 直接写出



国内投寄信函,假设每封信不超过20克付邮资80分,超过20克而不超过40克付邮资160分,超过40克而不超过60克付邮资240分,以此类推,请写出质量为
的信函与应付邮资y元之间的函数解析式,并画出函数的图象。

函数f(x)的图象如图所示,曲线BCD为抛物线的一部分.

(Ⅰ)求f(x)解析式;
(Ⅱ)若f(x)=1,求x的值;
(Ⅲ)若f(x)>f(2-x),求x的取值范围.

(Ⅰ)求f(x)解析式;
(Ⅱ)若f(x)=1,求x的值;
(Ⅲ)若f(x)>f(2-x),求x的取值范围.
某公司研发出一款产品,批量生产前先在某城市销售30天进行市场调查.调查结果发现:日销量
与天数
的对应关系服从图①所示的函数关系:每件产品的销售利润
与天数
的对应关系服从图②所示的函数关系.图①由抛物线的一部分(
为抛物线顶点)和线段
组成.


(Ⅰ)设该产品的日销售利润
,分别求出
,
,
的解析式,
(Ⅱ)若在30天的销售中,日销售利润至少有一天超过8500元,则可以投入批量生产,该产品是否可以投入批量生产,请说明理由.








(Ⅰ)设该产品的日销售利润





(Ⅱ)若在30天的销售中,日销售利润至少有一天超过8500元,则可以投入批量生产,该产品是否可以投入批量生产,请说明理由.
经市场调查,某商品在过去的100天内的销售量(单位:百件)和价格(单位:元)均为时间
(单位:天)的函数,且销售量近似地满足
,价格为
.
(1)求该种商品的日销售额
与时间
的函数关系;
(2)求
为何值时,日销售额最大.





(1)求该种商品的日销售额


(2)求
