- 集合与常用逻辑用语
- 函数与导数
- 函数及其性质
- 一次函数与二次函数
- 指对幂函数
- 函数的应用
- 导数及其应用
- 定积分
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
打赢扶贫攻坚战,到2020年全面建成小康社会,是***向全世界和全国人民的承诺.一贫困户在政府扶持下结合地方特色联合当地几户贫困户创办一家农产品公司.为了振兴乡村,打好扶贫攻坚战,某市党政府开展了地标特产展销会.该公司拟定在2020年元旦展销期间举行产品促销活动,经测算该产品的年销量t万件(生产量与销量相等)与促销费用x万元满足
已知2020年生产该产品还需投入成本4+t万元(不含促销费),促销费x满足当
产品销量价格定为5元/件,当
产品销量价格定为
元/件(其中a为正常数).
(1)试将2020年该产品的利润y万元表示为促销费费x万元的函数;
(2)2020年该公司促销费投入多少万元时,公司利润最大?




(1)试将2020年该产品的利润y万元表示为促销费费x万元的函数;
(2)2020年该公司促销费投入多少万元时,公司利润最大?
设定义域为R的函数
.
(1)在平面直角坐标系中作出函数f(x)的图象,并指出f(x)的单调区间(不需证明);
(2)若方程f(x)+5a=0有两个解,求出a的取值范围(不需严格证明,简单说明即可);
(3)设定义域为R的函数g(x)为偶函数,且当x≥0时,g(x)=f(x),求g(x)的解析式.

(1)在平面直角坐标系中作出函数f(x)的图象,并指出f(x)的单调区间(不需证明);
(2)若方程f(x)+5a=0有两个解,求出a的取值范围(不需严格证明,简单说明即可);
(3)设定义域为R的函数g(x)为偶函数,且当x≥0时,g(x)=f(x),求g(x)的解析式.
已知
是定义在
上的奇函数,且
,若
且
时,有
成立.
(1)判断
在
上的单调性,并用定义证明;
(2)解不等式
;
(3)若
对所有的
恒成立,求实数
的取值范围.






(1)判断


(2)解不等式

(3)若



已知f(x)=x2﹣ax在[0,1]上是单调函数,则实数a的取值范围是( )
A.(﹣∞,0] | B.[1,+∞) |
C.[2,+∞) | D.(﹣∞,0]∪[2,+∞) |
已知函数f(x)=(
)x,a,b∈R+,A=f(
),B=f(
),C=f(
),则A、B、C的大小关系为( )




A.A≤B≤C | B.A≤C≤B | C.B≤C≤A | D.C≤B≤A |