- 集合与常用逻辑用语
- 函数与导数
- 函数及其性质
- 一次函数与二次函数
- 指对幂函数
- 函数的应用
- 导数及其应用
- 定积分
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
随着现代社会的发展,我国对于环境保护越来越重视,企业的环保意识也越来越强.现某大型企业为此建立了5套环境监测系统,并制定如下方案:每年企业的环境监测费用预算定为1200万元,日常全天候开启3套环境监测系统,若至少有2套系统监测出排放超标,则立即检查污染源处理系统;若有且只有1套系统监测出排放超标,则立即同时启动另外2套系统进行1小时的监测,且后启动的这2套监测系统中只要有1套系统监测出排放超标,也立即检查污染源处理系统.设每个时间段(以1小时为计量单位)被每套系统监测出排放超标的概率均为
,且各个时间段每套系统监测出排放超标情况相互独立.
(1)当
时,求某个时间段需要检查污染源处理系统的概率;
(2)若每套环境监测系统运行成本为300元/小时(不启动则不产生运行费用),除运行费用外,所有的环境监测系统每年的维修和保养费用需要100万元.现以此方案实施,问该企业的环境监测费用是否会超过预算(全年按9000小时计算)?并说明理由.

(1)当

(2)若每套环境监测系统运行成本为300元/小时(不启动则不产生运行费用),除运行费用外,所有的环境监测系统每年的维修和保养费用需要100万元.现以此方案实施,问该企业的环境监测费用是否会超过预算(全年按9000小时计算)?并说明理由.
若一系列函数的解析式相同,值域相同但定义域不同,则称这些函数为“孪生函数”,那么函数解析式为
,值域为
的“孪生函数”共有______个.


下列结论中正确的是( )
A.已知函数![]() ![]() ![]() ![]() ![]() ![]() |
B.已知总体的各个个体的值由小到大依次为2,3,3,7,10,11,12,![]() |
C.方程![]() ![]() |
D.一次函数![]() |
一只昆虫的产卵数
与温度
有关,现收集了6组观测数据与下表中.由散点图可以发现样本点分布在某一指数函数曲线
的周围.
令
,经计算有:
(1)试建立
关于
的回归直线方程并写出
关于
的回归方程
.
(2)若通过人工培育且培育成本
与温度
和产卵数
的关系为
(单位:万元),则当温度为多少时,培育成本最小?
注:对于一组具有线性相关关系的数据
,
,…,
,其回归直线
的斜率和截距的最小二乘公式分别为
,
.



温度![]() | 21 | 23 | 25 | 27 | 29 | 31 |
产卵数![]() | 7 | 11 | 21 | 24 | 66 | 114 |
令

![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
26 | 40.5 | 19.50 | 6928 | 526.60 | 70 |
(1)试建立





(2)若通过人工培育且培育成本




注:对于一组具有线性相关关系的数据






画糖是一种以糖为材料在石板上进行造型的民间艺术,常见于公园与旅游景点.某师傅制作了一种新造型糖画,为了合理定价,先进行试销售,其单价x(元)与销量y(个)相关数据如表:
(1)已知销量y与单价x具有线性相关关系,求y关于x的线性回归方程;
(2)若该新造型糖画每个的成本为5.7元,要使得进入售卖时利润最大,请利用所求出的线性回归方程确定单价应该定为多少元?(结果保留到整数)
参考公式:线性回归方程y
x中斜率和截距最小二乘法估计计算公式:
.参考数据:
.
单价x(元) | 8.5 | 9 | 9.5 | 10 | 10.5 |
销量y(个) | 12 | 11 | 9 | 7 | 6 |
(1)已知销量y与单价x具有线性相关关系,求y关于x的线性回归方程;
(2)若该新造型糖画每个的成本为5.7元,要使得进入售卖时利润最大,请利用所求出的线性回归方程确定单价应该定为多少元?(结果保留到整数)
参考公式:线性回归方程y


